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Getting Started

This chapter provides step-by-step examples of basic Mapping Toolbox capabilities and guides you
toward examples and documentation that can help answer your questions. For an alphabetical list of
functions click on MATLAB Functions link at bottom of main Mapping Toolbox page.

• “Mapping Toolbox Product Description” on page 1-2
• “Acknowledgments” on page 1-3
• “Create Your First World Map” on page 1-4
• “Getting More Help” on page 1-13
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Mapping Toolbox Product Description
Analyze and visualize geographic information

Mapping Toolbox provides algorithms and functions for transforming geographic data and creating
map displays. You can visualize your data in a geographic context, build map displays from more than
60 map projections, and transform data from a variety of sources into a consistent geographic
coordinate system.

Mapping Toolbox supports a complete workflow for managing geographic data. You can import vector
and raster data from a wide range of file formats and web map servers. The toolbox lets you process
and customize data using trimming, interpolation, resampling, coordinate transformations, and other
techniques. Data can be combined with base map layers from multiple sources in a single map
display. You can export data in file formats such as shapefile, GeoTIFF, and KML.

1 Getting Started
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Create Your First World Map

Geospatial data can be complex and difficult to process. Mapping Toolbox™ functions handle many of
the details of loading, representing, and displaying spatial data. Spatial data describes location,
shape, and spatial relationships. Geospatial data is spatial data that is georeferenced, or tied to,
specific locations on, under, or above the surface of a planet.

This page shows how to create similar world maps using map axes (since R2023a) and axesm-based
maps. For a comparison of map axes and axesm-based maps, including when to use each type of
display, see “Choose a 2-D Map Display” on page 4-2.

Load Data

Load data to use in the examples.

Read three shapefiles into the workspace by using the readgeotable function.

• A shapefile containing world land areas. The file represents the land areas using polygons in
geographic coordinates.

• A shapefile containing world rivers. The file represents the rivers using lines in geographic
coordinates.

• A shapefile containing world cities. The file represents the cities using points in geographic
coordinates.

land = readgeotable("landareas.shp");
rivers = readgeotable("worldrivers.shp");
cities = readgeotable("worldcities.shp");

Load a MAT file containing the coordinates of global coastlines. The variables within the MAT file,
coastlat and coastlon, specify numeric latitude and longitude coordinates, respectively.

load coastlines

Create Map Using Map Axes

Create a world map using a map axes object.

Set up a new map by using the newmap function. By default, map axes objects use an Equal Earth
projection centered on the prime meridian and the equator.

figure
newmap
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Display the land areas using the geoplot function.

geoplot(land)
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You can use map axes to create maps in any supported projected coordinate reference system (CRS).
Set up a new map using a projected CRS that is appropriate for Europe. Create the CRS using the
projcrs function and the EPSG code 3035, which uses a Lambert Azimuthal Equal Area projection
method.

figure
p = projcrs(3035);
newmap(p)
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Display the land areas as green polygons, the rivers as blue lines, and the cities as red points.

geoplot(land,FaceColor=[0.65 0.85 0.45])
hold on
geoplot(rivers,Color=[0 0.4470 0.7410])
geoplot(cities,MarkerEdgeColor=[0.6350 0.0780 0.1840])

Label the Atlantic Ocean. Specify the location of the text using latitude and longitude coordinates.

text(39,-43,"Atlantic Ocean")
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Create Map Using axesm-Based Map

Create a world map using an axesm-based map.

Set up a map of the world by using the worldmap function. The function automatically selects the
map projection and the coordinate limits based on the region you specify. When you specify the
region as world, the function selects a Robinson projection centered on the prime meridian and the
equator.

figure
worldmap world
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Display the coastline data using the plotm function.

load coastlines
plotm(coastlat,coastlon)
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You can also create axesm-based maps for smaller regions. Set up a map of Europe by using the
worldmap function.

figure
worldmap europe
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In addition to standard axes properties, axesm-based maps contain properties such as the map
projection type, the projection parameters, and the map limits. You can access and modify these
additional properties using by using the getm and setm functions.

Query the map projection used by the map. The result indicates that the map uses an Equidistant
Conic projection.

ax = gca;
getm(ax,"MapProjection")

ans = 
'eqdconic'

Display the data by using the geoshow function. Display the world land areas as green polygons, the
world rivers as blue lines, and the world cities as red points.

geoshow(land,"FaceColor",[0.88 0.95 0.81])
geoshow(rivers,"Color",[0 0.4470 0.7410])
geoshow(cities,"Marker",".","MarkerEdgeColor",[0.6350 0.0780 0.1840])

Label the Mediterranean Sea by using the textm function. Specify the location of the text using
latitude and longitude coordinates.

textm(35,14,"Mediterranean Sea")
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See Also
Properties
MapAxes Properties | axesm-Based Map Properties

Related Examples
• “Create Common Plots Using Map Axes” on page 4-7
• “Create Map of Quadrangle Using Cartographic Map Layout” on page 6-19
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Getting More Help

Ways to Get Mapping Toolbox Help
Help is available for individual commands and classes of Mapping Toolbox commands:

• help functionname for help on a specific function, often including examples
• doc functionname to read a function's reference page in the Help browser, including examples

and illustrations
• help map for a list of functions by category
• mapdemos for a list of Mapping Toolbox examples
• maps to see a list of all Mapping Toolbox map projections by class, name, and ID
• maplist to return a structure describing all Mapping Toolbox map projections
• projlist to list map projections supported by projfwd and projinv
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Understanding Map Data

• “What Is a Map?” on page 2-2
• “What Is Geospatial Data?” on page 2-3
• “Vector Geodata” on page 2-4
• “Raster Geodata” on page 2-5
• “Combine Vector and Raster Geodata on the Same Map” on page 2-6
• “Create and Display Polygons” on page 2-8
• “Segments Versus Polygons” on page 2-16
• “Create Geospatial Tables” on page 2-18
• “Combine Vector Data Using Table Joins” on page 2-23
• “Geographic Data Structures” on page 2-27
• “Georeferenced Raster Data” on page 2-35
• “Construct a Global Data Grid” on page 2-37
• “Geolocated Data Grids” on page 2-39
• “Geographic Interpretations of Geolocated Grids” on page 2-43
• “Spatially Reference Imported Rasters” on page 2-46
• “Mosaic Spatially Referenced Raster Tiles” on page 2-50
• “Unprojecting a Digital Elevation Model (DEM)” on page 2-54
• “Georeferencing an Image to an Orthotile Base Layer” on page 2-65
• “Find Geospatial Data Online” on page 2-77
• “Find Geospatial Vector Data” on page 2-78
• “Find Geospatial Raster Data” on page 2-79
• “Functions that Read and Write Geospatial Data” on page 2-81
• “Export Vector Geodata” on page 2-83
• “Exporting Vector Data to KML” on page 2-84
• “Export KML Files for Viewing in Earth Browsers” on page 2-95
• “Select Shapefile Data to Read” on page 2-99
• “Export Images and Raster Grids to GeoTIFF” on page 2-103
• “Create, Process, and Export Digital Surface Model from Lidar Data” on page 2-118
• “Build Pikes Peak RoadRunner 3D Scene Using RoadRunner HD Map” on page 2-127
• “Converting Coastline Data (GSHHG) to Shapefile Format” on page 2-134
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What Is a Map?
Mapping Toolbox software manipulates electronic representations of geographic data. It lets you
import, create, use, and present geographic data in various forms and to various ends. In the digital
network era, it is easy to think of geospatial data as maps and maps as data, but you should take care
to note the differences between these concepts.

The simplest (although perhaps not the most general) definition of a map is a representation of
geographic data. Most people today generally think of maps as two-dimensional; to the ancient
Egyptians, however, maps first took the form of lists of place names in the order they would be
encountered when following a given road. Today such a list would be considered as map data rather
than as a map. When most people hear the word "map" they tend to visualize two-dimensional
renditions such as printed road, political, and topographic maps, but even classroom globes and
computer graphic flight simulation scenes are maps under this definition.

In this toolbox, map data is any variable or set of variables representing a set of geographic locations,
properties of a region, or features on a planet's surface, regardless of how large or complex the data
is, or how it is formatted. Such data can be rendered as maps in a variety of ways using the functions
and user interfaces provided.
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What Is Geospatial Data?
Geospatial data comes in many forms and formats, and its structure is more complicated than tabular
or even nongeographic geometric data. It is, in fact, a subset of spatial data, which is simply data that
indicates where things are within a given coordinate system. Mileposts on a highway, an engineering
drawing of an automobile part, and a rendering of a building elevation all have coordinate systems,
and can be represented as spatial data when properly quantified (digitized). Such coordinate systems,
however, are local and not explicitly tied or oriented to the Earth's surface; thus, most digital
representations of mileposts, machine parts, and buildings do not qualify as geospatial data (also
called geodata).

What sets geospatial data apart from other spatial data is that it is absolutely or relatively positioned
on a planet, or georeferenced. That is, it has a terrestrial coordinate system that can be shared by
other geospatial data. There are many ways to define a terrestrial coordinate system and also to
transform it to any number of local coordinate systems, for example, to create a map projection.
However, most are based on a framework that represents a planet as a sphere or spheroid that spins
on a north-south axis, and which is girded by an equator (an imaginary plane midway between the
poles and perpendicular to the rotational axis).

Geodata is coded for computer storage and applications in two principal ways: vector and raster
representations. It has been said that "raster is faster but vector is corrector." There is truth to this,
but the situation is more complex. For more information, see “Vector Geodata” on page 2-4 and
“Raster Geodata” on page 2-5.
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Vector Geodata
Vector data (in the computer graphics sense rather than the physics sense) can represent a map.
Such vectors take the form of sequences of latitude-longitude or projected coordinate pairs
representing a point set, a linear map feature, or an areal map feature. For example, points
delineating the boundary of the United States, the interstate highway system, the centers of major
U.S. cities, or even all three sets taken together, can be used to make a map. In such representations,
the geographic data is in vector format and displays of it are referred to as vector maps. Such data
consists of lists of specific coordinate locations (which, if describing linear or areal features, are
normally points of inflection where line direction changes), along with some indication of whether
each is connected to the points adjacent to it in the list.

In the Mapping Toolbox environment, vector data consists of sequentially ordered pairs of geographic
(latitude, longitude) or projected (x,y) coordinate pairs (also called tuples). Successive pairs are
assumed to be connected in sequence; breaks in connectivity must be delineated by the creation of
separate vector variables or by inserting separators (usually NaNs) into the sets at each breakpoint.
For vector map data, the connectivity (topological structure) of the data is often only a concern
during display, but it also affects the computation of statistics such as length and area.

You can represent vector data by using geospatial tables or data structures. For more information
about geospatial tables, see “Create Geospatial Tables” on page 2-18. For more information about
data structures, see “Geographic Data Structures” on page 2-27.
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Raster Geodata
You can map data represented as a matrix (a 2-D MATLAB® array) in which each row-and-column
element corresponds to a rectangular patch of a specific geographic area, with implied topological
connectivity to adjacent patches. This is commonly referred to as raster data. Raster is actually a
hardware term meaning a systematic scan of an image that encodes it into a regular grid of pixel
values arrayed in rows and columns.

When data in raster format represents the surface of a planet, it is called a data grid, and the data is
stored as an array or matrix. The toolbox leverages the power of MATLAB matrix manipulation in
handling this type of map data. This documentation uses the terms raster data and data grid
interchangeably to talk about geodata stored in two-dimensional array form.

A raster can encode either an average value across a cell or a value sampled (posted) at the center of
that cell. While geolocated data grids explicitly indicate which type of values are present (see
“Geolocated Data Grids” on page 2-39), external metadata/user knowledge is required to be able to
specify whether a regular data grid encodes averages or samples of values.

Digital Elevation Data
When raster geodata consists of surface elevations, the map can also be referred to as a digital
elevation model/matrix (DEM), and its display is a topographical map. The DEM is one of the most
common forms of digital terrain model (DTM), which can also be represented as contour lines,
triangulated elevation points, quadtrees, octree, or otherwise.

The topo60c MAT-file, which contains global terrain data, is an example of a DEM. In this 180-by-360
matrix, each row represents one degree of latitude, and each column represents one degree of
longitude. Each element of this matrix is the average elevation, in meters, for the one-degree-by-one-
degree region of the Earth to which its row and column correspond.

Remotely Sensed Image Data
Raster geodata also encompasses georeferenced imagery. Like data grids, images are organized into
rows and columns. There are subtle distinctions, however, which are important in certain contexts.
One distinction is that an image may contain RGB or multispectral channels in a single array, so that
it has a third (color or spectral) dimension. In this case a 3-D array is used rather than a 2-D (matrix)
array. Another distinction is that while data grids are stored as class double in the toolbox, images
may use a range of MATLAB storage classes, with the most common being uint8, uint16, double,
and logical. Finally, for grayscale and RGB images of class double, the values of individual array
elements are constrained to the interval [0 1].

In terms of georeferencing—converting between column/row subscripts and 2-D map or geographic
coordinates—images and data grids behave the same way (which is why both are considered to be a
form of raster geodata). However, when performing operations that process the values raster
elements themselves, including most display functions, it is important to be aware of whether you are
working with an image or a data grid, and for images, how spectral data is encoded.
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Combine Vector and Raster Geodata on the Same Map
Vector map variables and data grid variables are often used or displayed together. For example,
continental coastlines in vector form might be displayed with a grid of temperature data to make the
latter more useful. When several map variables are used together, regardless of type, they can be
referred to as a single map. To do this, of course, the different data sets must use the same
coordinate system (i.e., geographic coordinates on the same ellipsoid or an identical map projection).

Combining Raster Data and Vector Data on the Same Map

This example shows how to combine raster data and vector data on the same axesm-based map using
the geoshow function.

First, load elevation raster data and a geographic cells reference object. Get the coordinates of
coastlines as vectors.

load topo60c
load coastlines

Create an axesm-based map using a Robinson projection. Then, display the raster and apply a
colormap appropriate for elevation data.

axesm robinson
geoshow(topo60c,topo60cR,'DisplayType','texturemap')
demcmap(topo60c)
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Display the vectors in red on top of the elevation map.

geoshow(coastlat,coastlon,'Color','r')
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Create and Display Polygons
Polygons represent geographic objects that cover area, such as continents, islands, and lakes. They
may contain holes or multiple regions. Create a polygon by listing vertices that define its boundaries
without intersecting. The order of the vertices determines what parts of the polygon are filled. List
external boundaries clockwise and internal boundaries counterclockwise, such that the inside of the
polygon is always to the right of the boundary.

Simple Polygon

Display a simple polygon with one region and no holes. First, list its vertices in a clockwise order.
Close the polygon by repeating the first vertex at the end of the list.

x1 = [0 3 4 1 0];
y1 = [0 1 3 2 0];

Display the vertices as a polygon using the mapshow function by specifying 'DisplayType' as
'polygon'.

mapshow(x1,y1,'DisplayType','polygon')
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Polygons with Holes or Multiple Regions

Define polygons with multiple regions or holes by separating the boundaries with NaN values. List the
vertices of external boundaries in a clockwise order and the vertices of internal boundaries in a
counterclockwise order.

x2 = [0 1 8 6 0 NaN 1 4 2 1 NaN 5 6 7 3 5];
y2 = [0 6 8 2 0 NaN 1 3 5 1 NaN 3 5 7 6 3];

These vectors define a polygon with one external boundary and two internal boundaries. The
boundaries are separated using NaN values. Verify the vertex order of the boundaries using the
ispolycw function. The ispolycw function returns 1 when the vertices are in a clockwise order.

ispolycw(x2,y2)

ans = 1x3 logical array

   1   0   0

Display the polygon. The internal boundaries create holes within the polygon.

figure
mapshow(x2,y2,'DisplayType','polygon')
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Now, list the vertices for a polygon with two nonintersecting regions. One of the regions has a hole.
Verify the vertex order of the boundaries using ispolycw.

x3 = [0 1 5 6 0 NaN 1 5 4 2 1 NaN 7 6 8 8 7];
y3 = [0 6 7 2 0 NaN 1 3 6 5 1 NaN 4 7 8 7 4];
ispolycw(x3,y3)

ans = 1x3 logical array

   1   0   1

Display the polygon. The external boundaries create two nonintersecting regions and the internal
boundary creates a hole.

figure
mapshow(x3,y3,'DisplayType','polygon')
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Polygons Using Geographic Coordinates

In general, you can use geographic coordinates when you define polygons over small regions and call
functions such as ispolycw. This is true except in cases where the polygon wraps a pole or crosses
the Antimeridian.

For example, display the state of Michigan on a map using polygons with geographic coordinates.
First, read the vertices of the state boundaries.

states = shaperead('usastatehi.shp','UseGeoCoords',true);
michigan = states(22);
lat = michigan.Lat;
lon = michigan.Lon;

Count the boundaries and verify their vertex order. To use ispolycw with geographic coordinates,
list the longitude vector as the first argument and the latitude vector as the second argument. The 1-
by-6 output array means there are six boundaries. Each element of the array is 1, which means that
each boundary is the exterior boundary of its own region.

ispolycw(lon,lat)

ans = 1x6 logical array

   1   1   1   1   1   1

 Create and Display Polygons

2-11



Display the polygon on a map using the geoshow function, specifying 'DisplayType' as
'polygon'.

usamap 'Michigan'
geoshow(lat,lon,'DisplayType','polygon')

Clip the polygon to the latitude and longitude limits of Isle Royale National Park using the maptrimp
function. Display the clipped polygon on a new map.

latlim = [47.8 48.2];
lonlim = [-89.3 -88.4];
[latT,lonT] = maptrimp(lat,lon,latlim,lonlim);

figure
usamap(latlim,lonlim)
geoshow(latT,lonT,'DisplayType','polygon')
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Filled Region of Polygons Using Geographic Coordinates

When you display a polygon on the Earth, the boundary divides the Earth into two regions. Both of
these regions have finite area, so either could be the inside region of the polygon.

As a result, when you project the vertices of a polygon onto a map using the geoshow function, the
filled region may be different than you expect. Change which region is filled by reversing the order of
the vertices.

For example, display a small polygon on a world map.
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lat2 = [0 10 40 30 0];
lon2 = [0 20 30 10 0];

figure
worldmap('world')
geoshow(lat2,lon2,'DisplayType','polygon')

The outside region of the polygon is filled. Reverse the order of the vertices by applying the flip
function to the coordinate vectors. Then, display the polygon again.

lat2f = flip(lat2);
lon2f = flip(lon2);

figure
worldmap('world')
geoshow(lat2f,lon2f,'DisplayType','polygon')
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The inside region of the polygon is filled instead.

See Also
Functions
ispolycw | worldmap | geoshow | mapshow

Objects
polyshape | mappolyshape | geopolyshape
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Segments Versus Polygons
Geographic objects represented by vector data might or might not be formatted as polygons. Imagine
two variables, latcoast and loncoast, that correspond to a sequence of points that caricature the
coast of the island of Great Britain. If this data returns to its starting point, then a polygon describing
Great Britain exists. This data might be plotted as a patch or as a line, and it might be logically
employed in calculations as either.

Now suppose that you want to represent the Anglo-Scottish border, proceeding from the west coast at
Solway Firth to the east coast at Berwick-upon-Tweed. This data can only be properly defined as a
line, defined by two or more points, which you can represent with two more variables, latborder
and lonborder. When plotted together, the two pairs of variables can form a map. The patch of
Great Britain plus the line showing the Scottish border might look like two patches or regions, but
there is no object that represents England and no object that represents Scotland, either in the
workspace or on the map.

In order to represent both regions properly, the Great Britain polygon needs to be split at the two
points where the border meets it, and a copy of latborder and lonborder concatenated to both
lines (placing one in reverse order). The resulting two polygons can be represented separately (e.g.,
in four variables named latengland, lonengland, latscotland, and lonscotland) or in two
variables that define two polygons each, delineated by NaNs (e.g., latuk, lonuk).

The distinction between line and polygon data might not appear to be important, but it can make a
difference when you are performing geographic analysis and thematic mapping. For example,
polygon data can be treated as line data and displayed with functions such as linem, but line data
cannot be handled as polygons unless it is restructured to make all objects close on themselves.

See Also
geoshow | polymerge
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More About
• “Create and Display Polygons” on page 2-8
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Create Geospatial Tables

Vector data uses points, lines, polygons, and their nonspatial attributes to describe real-world events,
locations and objects. For example, you can use a point and timestamp attribute to represent a
tsunami event, a line and name attribute to represent a river location, and a polygon and age
attribute to represent a building.

You can represent vector data by using geospatial tables. A geospatial table is a table or timetable
object that contains a Shape variable and attribute variables.

• The Shape variable contains 2-D information about point, line, and polygon shapes. The Shape
variable can contain combinations of shape types, but all the shapes must have the same
coordinate reference system (CRS). The Shape variable must be the first variable of the table.

Represent shapes with coordinates in geographic CRSs by using geopointshape,
geolineshape, and geopolyshape objects. The GeographicCRS property of each object
contains the CRS as a geocrs object.

Represent shapes with coordinates in projected CRSs by using mappointshape, maplineshape,
and mappolyshape objects. The ProjectedCRS property of each object contains the CRS as a
projcrs object.

• The attribute variables contain data such as names, classifications, and measurements.

For example, you can import the shapefile concord_roads.shp, which represents a road network in
Concord, MA, as a geospatial table. Each row of the table contains a maplineshape object with
information about the line shape and several attributes with information such as the street name,
road class, and road length.

There are multiple ways to create geospatial tables. You can:

• Read a geospatial table from a vector data file by using the readgeotable function.
• Read a table or timetable from a file containing pointwise data or well-known text (WKT) string

representations of geometry by using the readtable or readtimetable function, and then
convert the table to a geospatial table by using the table2geotable function.

• Create a geospatial table by using the table or timetable function. For more information about
creating tables, see “Create Tables and Assign Data to Them”. For more information about
creating timetables, see “Create Timetables”.

These examples show how to create geospatial tables using each of the listed processes.

Read Geospatial Table from File

Read a shapefile containing a network of road segments in Concord, MA as a geospatial table by
using the readgeotable function.

GT = readgeotable("concord_roads.shp");

View the first eight rows of the geospatial table. The Shape variable contains information about the
shapes. For this example, all the shapes are lines. The other variables contain attribute data.

head(GT)
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       Shape         STREETNAME      RT_NUMBER    CLASS    ADMIN_TYPE    LENGTH
    ____________    _____________    _________    _____    __________    ______

    maplineshape    ""                  ""          6          0         67.264
    maplineshape    "WRIGHT FARM"       ""          5          0         72.178
    maplineshape    "WRIGHT FARM"       ""          5          0         43.965
    maplineshape    "WRIGHT FARM"       ""          5          0         109.65
    maplineshape    "WRIGHT FARM"       ""          5          0         18.019
    maplineshape    ""                  ""          6          0         58.444
    maplineshape    "WRIGHT FARM"       ""          5          0         16.925
    maplineshape    ""                  ""          6          0         55.633

View the projected CRS for the line shapes. All shapes in a geospatial table must have the same CRS.

GT.Shape.ProjectedCRS

ans = 
  projcrs with properties:

                    Name: "NAD83 / Massachusetts Mainland"
           GeographicCRS: [1x1 geocrs]
        ProjectionMethod: "Lambert Conic Conformal (2SP)"
              LengthUnit: "meter"
    ProjectionParameters: [1x1 map.crs.ProjectionParameters]

View information about the line shape in the first row of the table.

GT.Shape(1)

ans = 
  maplineshape with properties:

                NumParts: 1
                Geometry: "line"
    CoordinateSystemType: "planar"
            ProjectedCRS: [1x1 projcrs]

Display the roads.

mapshow(GT)
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Create Geospatial Table from Table

Read data about tsunami events as a table by using the readtable function. The coordinates of the
tsunami source locations are in the Latitude and Longitude table variables.

T = readtable("tsunamis.xlsx");

Convert the table to a geospatial table by using the table2geotable function. The function detects
the Latitude and Longitude variables and uses them to create the Shape variable of the table.

GT = table2geotable(T);

View the Shape variable of the geospatial table. The tsunami source locations are points in a
geographic coordinate system.

GT.Shape

ans = 
  162×1 geopointshape array with properties:

               NumPoints: [162×1 double]
                Latitude: [162×1 double]
               Longitude: [162×1 double]
                Geometry: "point"
    CoordinateSystemType: "geographic"
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           GeographicCRS: []

Plot the source locations on a web map. Display the attributes for a shape by selecting a marker.

wmmarker(GT)

Create Geospatial Table from Arrays

Create a geospatial table containing the locations and names of cities.

Create an array of geopointshape objects from column vectors of latitude and longitude
coordinates. Specify the geographic CRS as the World Geodetic System of 1984, which has the EPSG
code 4326.

lats = [35.7082 -22.8842 51.5074 39.9042 37.9838]';
lons = [139.6401 -43.3882 -0.1278 116.4074 23.7275]';
shape = geopointshape(lats,lons);
shape.GeographicCRS = geocrs(4326)

shape = 
  5x1 geopointshape array with properties:

               NumPoints: [5x1 double]
                Latitude: [5x1 double]
               Longitude: [5x1 double]
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                Geometry: "point"
    CoordinateSystemType: "geographic"
           GeographicCRS: [1x1 geocrs]

Specify the names of the cities as a column vector.

names = ["Tokyo" "Rio de Janeiro" "London" "Beijing" "Athens"]';

Create the geospatial table. The Shape variable contains the geopointshape objects and the Name
variable contains the names.

GT = table(shape,names,VariableNames=["Shape" "Name"])

GT=5×2 table
             Shape                   Name      
    _______________________    ________________

    (35.7082°N, 139.6401°E)    "Tokyo"         
    (22.8842°S,  43.3882°W)    "Rio de Janeiro"
    (51.5074°N,   0.1278°W)    "London"        
    (39.9042°N, 116.4074°E)    "Beijing"       
    (37.9838°N,  23.7275°E)    "Athens"        

Verify that the table is a geospatial table.

isgeotable(GT)

ans = logical
   1

Tips
Some functions that accept geospatial tables as input require the geospatial table to contain shapes
of a specific type. For example, the kmlwrite function only accepts geospatial tables that contain
geographic point, line, or polygon shapes.

See Also
Functions
readgeotable | readtable | table2geotable | struct2geotable | isgeotable

Objects
table | timetable
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Combine Vector Data Using Table Joins

To link vector data from one file to vector data with shared attributes from other files, import the files
as tables and use a table join. A table join combines two tables by row according to key variables such
as state names, alphanumeric IDs, or Federal Information Processing System (FIPS) codes.

This example shows you how to read data from two different files into separate tables, join the tables,
create a choropleth map from the joined table, and export the joined table into a shapefile.

Read Data into Tables

Read a comma-separated text file into a table. The file contains farmland statistics for each US state
and the District of Columbia, based on the National Agricultural Statistics Service (NASS) Farms and
Land in Farms 2019 Summary. For more information about the statistics, see [1] on page 2-26.
Display the first row of the table.

farms = readtable("farmland.txt",TextType="string");
farms(1,:)

ans=1×4 table
    StateName    NumberOfFarms    AcresInFarms    AverageFarmSize
    _________    _____________    ____________    _______________

    "Alabama"        38800            8300              214      

To create a map from the table, you also need spatial information. Read a shapefile containing
polygon shapes for each of the US states and the District of Columbia into a geospatial table. A
geospatial table has a Shape variable containing shape information for each row. Display the first row
of the geospatial table.

states = readgeotable("usastatelo.shp");
states(1,:)

ans=1×5 table
       Shape          Name       LabelLat    LabelLon    PopDens2000
    ____________    _________    ________    ________    ___________

    geopolyshape    "Alabama"     32.283     -86.921        87.6    

The Shape variable of the table contains geopolyshape objects, which are polygons in geographic
coordinates. Display the properties of the geopolyshape object in the first row.

states.Shape(1)

ans = 
  geopolyshape with properties:

              NumRegions: 1
                NumHoles: 0
                Geometry: "polygon"
    CoordinateSystemType: "geographic"
           GeographicCRS: [1×1 geocrs]
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Join Tables

Join the tables, using the state name variables Name and StateName as the key variables. Display the
first row of the joined table.

statesFarms = outerjoin(states,farms,LeftKey="Name",RightKey="StateName");
statesFarms(1,:)

ans=1×9 table
       Shape          Name       LabelLat    LabelLon    PopDens2000    StateName    NumberOfFarms    AcresInFarms    AverageFarmSize
    ____________    _________    ________    ________    ___________    _________    _____________    ____________    _______________

    geopolyshape    "Alabama"     32.283     -86.921        87.6        "Alabama"        38800            8300              214      

The outerjoin function creates a table that includes rows where the key variables from one input
table have no matches in the other input table. As a result, the output table can have more rows than
either of the input tables. To create a table that includes the rows from one input table and appends
rows where the key variables match values in the key variables of the other input table, use the join
function instead. To create a table that includes only the rows where the key variables from one input
table have matching values in the other input table, use the innerjoin function instead.

Inspect Joined Table

Mismatches in key variables can cause unexpected results in the joined table. Inspect the joined table
by displaying the number of rows.

height(statesFarms)

ans = 52

Each input table contains 51 rows, but the joined table contains 52 rows. Because the state names
are the key variables, this result indicates a mismatch in the names.

The table of farmland statistics identifies the District of Columbia as Washington DC, which does not
match the corresponding row of the table of polygon shapes. Change the name in the table of
farmland statistics so that it matches the name in the table of polygon shapes.

dcRow = farms.StateName == "Washington DC";
farms.StateName(dcRow) = "District of Columbia";

Join the tables again and display the number of rows in the joined table.

statesFarms = outerjoin(states,farms,LeftKey="Name",RightKey="StateName");
height(statesFarms)

ans = 51

The number of rows in the output table matches the number of rows in the input table.

Sort the joined table by average farm size and display the top eight rows.

topkrows(statesFarms,8,"AverageFarmSize")

ans=8×9 table
       Shape             Name         LabelLat    LabelLon    PopDens2000      StateName       NumberOfFarms    AcresInFarms    AverageFarmSize
    ____________    ______________    ________    ________    ___________    ______________    _____________    ____________    _______________
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    geopolyshape    "Wyoming"          43.033     -107.56         5.1        "Wyoming"             12000           29000             2417      
    geopolyshape    "Montana"          46.867     -110.58         6.2        "Montana"             26800           58000             2164      
    geopolyshape    "Nevada"           39.177      -116.4        18.2        "Nevada"               3350            6100             1821      
    geopolyshape    "New Mexico"       34.291     -106.18          15        "New Mexico"          24800           40000             1613      
    geopolyshape    "North Dakota"     47.469       -99.5         9.3        "North Dakota"        26100           39300             1506      
    geopolyshape    "South Dakota"     44.272     -99.679         9.9        "South Dakota"        29600           43200             1459      
    geopolyshape    "Arizona"          34.345     -112.07        45.2        "Arizona"             19000           26200             1379      
    geopolyshape    "Nebraska"         41.504     -99.435        22.3        "Nebraska"            45700           44900              982      

Create Map

Create a choropleth map of average farm size for the conterminous US.

figure
rows = statesFarms.Name ~= "Hawaii" & statesFarms.Name ~= "Alaska";
geoplot(statesFarms(rows,:),ColorVariable="AverageFarmSize")
geobasemap topographic

Add a title and colorbar.

title("Average Farm Size Per US State in 2019")
cb = colorbar;
cb.Label.String = "Size in Acres";

Export Table as Shapefile

Export the joined table as a new shapefile.
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shapewrite(statesFarms,"usastatelo_farmland.shp")

References

[1] National Agricultural Statistics Service. “Number of Farms, Land in Farms, and Average Farm
Size — States and United States: 2018–2019.” In Farms and Land in Farms 2019 Summary, 6. USDA,
February 2020. https://www.nass.usda.gov/Publications/Todays_Reports/reports/fnlo0220.pdf.

See Also
Functions
readtable | readgeotable

Objects
geopolyshape

Related Examples
• “Create Geospatial Tables” on page 2-18
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Geographic Data Structures
Mapping Toolbox software provides an easy means of displaying, extracting, and manipulating
collections of vector map features organized in geographic data structures.

A geographic data structure is a MATLAB structure array that has one element per geographic
feature. Each feature is represented by coordinates and attributes. A geographic data structure that
holds geographic coordinates (latitude and longitude) is called a geostruct, and one that holds map
coordinates (projected x and y) is called a mapstruct. Geographic data structures hold only vector
features and cannot be used to hold raster data (regular or geolocated data grids or images).

Alternatively, you can represent vector data by using geospatial tables. Geospatial tables are table
or timetable objects with a Shape variable and attribute variables. For more information about
geospatial tables, see “Create Geospatial Tables” on page 2-18.

Shapefiles
Geographic data structures most frequently originate when vector geodata is imported from a
shapefile. The Environmental Systems Research Institute designed the shapefile format for vector
geodata. Shapefiles encode coordinates for points, multipoints, lines, or polygons, along with non-
geometrical attributes.

A shapefile stores attributes and coordinates in separate files; it consists of a main file, an index file,
and an xBASE file. All three files have the same base name and are distinguished by the
extensions .shp, .shx, and .dbf, respectively. (For example, given the base name
'concord_roads' the shapefile file names would be 'concord_roads.shp',
'concord_roads.shx', and 'concord_roads.dbf').

The Contents of Geographic Data Structures
The shaperead function reads vector features and attributes from a shapefile and returns a
geographic data structure array. The shaperead function determines the names of the attribute
fields at run-time from the shapefile xBASE table or from optional, user-specified parameters. If a
shapefile attribute name cannot be directly used as a field name, shaperead assigns the field an
appropriately modified name, usually by substituting underscores for spaces.
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Fields in a Geographic Data Structure
Field Name Data Type Description Comments
Geometry character vector One of the following shape types:

'Point', 'MultiPoint',
'Line', or 'Polygon'.

For a 'PolyLine', the
value of the Geometry
field is simply 'Line'.

BoundingBox 2-by-2 numerical
array

Specifies the minimum and
maximum feature coordinate
values in each dimension in the
following form:

min(X) min(Y)
max(X) max(Y)

Omitted for shape type
'Point'.

X, Y, Lon, or Lat 1-by-N array of
class double

Coordinate vector.  

Attr character vector
or scalar number

Attribute name, type, and value. Optional. There are
usually multiple
attributes.

The shaperead function does not support any 3-D or "measured" shape types: 'PointZ',
'PointM', 'MultipointZ', 'MultipointM', 'PolyLineZ', 'PolyLineM', 'PolygonZ',
'PolylineM', or 'Multipatch'. Also, although 'Null Shape' features can be present in a
'Point', 'Multipoint', 'PolyLine', or 'Polygon' shapefile, they are ignored.

PolyLine and Polygon Shapes

In geographic data structures with Line or Polygon geometries, individual features can have
multiple parts—disconnected line segments and polygon rings. The parts can include
counterclockwise inner rings that outline "holes." For an illustration of this, see “Create and Display
Polygons” on page 2-8. Each disconnected part is separated from the next by a NaN within the X and
Y (or Lat and Lon) vectors. You can use the isShapeMultipart function to determine if a feature
has NaN-separated parts.

Each multipoint or NaN-separated multipart line or polygon entity constitutes a single feature and
thus has one character vector or scalar double value per attribute field. It is not possible to assign
distinct attributes to the different parts of such a feature; any character vector or numeric attribute
imported with (or subsequently added to) the geostruct or mapstruct applies to all the feature's parts
in combination.

Mapstructs and Geostructs

By default, shaperead returns a mapstruct containing X and Y fields. This is appropriate if the data
set coordinates are already projected (in a map coordinate system). Otherwise, if the data set
coordinates are unprojected (in a geographic coordinate system), use the parameter-value pair
'UseGeoCoords',true to make shaperead return a geostruct having Lon and Lat fields.

Coordinate Types. If you do not know whether a shapefile uses geographic coordinates or map
coordinates, here are some things you can try:

• If the shapefile includes a projection file (.prj), use shapeinfo to get information about the
coordinate reference system. If the CoordinateReferenceSystem field of the returned
structure is a projcrs object, you have map coordinates. If the field is a geocrs object, you have
geographic coordinates.
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• If the shapefile does not include a projection file, use shapeinfo to obtain the BoundingBox. By
looking at the ranges of coordinates, you may be able to tell what kind of coordinates you have.

• Ask your data provider.

The geoshow function displays geographic features stored in geostructs, and the mapshow function
displays geographic features stored in mapstructs. If you try to display a mapstruct with geoshow,
the function issues a warning and calls mapshow. If you try to display a geostruct with mapshow, the
function projects the coordinates with a Plate Carree projection and issues a warning.

Examining a Geographic Data Structure
Here is an example of an unfiltered mapstruct returned by shaperead:

S = shaperead('concord_roads.shp')

The output appears as follows:

S = 
609x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

The shapefile contains 609 features. In addition to the Geometry, BoundingBox, and coordinate
fields (X and Y), there are five attribute fields: STREETNAME, RT_NUMBER, CLASS, ADMIN_TYPE, and
LENGTH.

Look at the 10th element:

S(10)

The output appears as follows:

ans = 
       Geometry: 'Line'
    BoundingBox: [2x2 double]
              X: [1x9 double]
              Y: [1x9 double]
     STREETNAME: 'WRIGHT FARM'
      RT_NUMBER: ''
          CLASS: 5
     ADMIN_TYPE: 0
         LENGTH: 79.0347

This mapstruct contains 'Line' features. The tenth line has nine vertices. The values of the first two
attributes are character vectors. The second happens to be an empty character vector. The final three
attributes are numeric. Across the elements of S, X and Y can have various lengths, but STREETNAME
and RT_NUMBER must always contain character vectors, and CLASS, ADMIN_TYPE and LENGTH must
always contain scalar doubles.
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In this example, shaperead returns an unfiltered mapstruct. If you want to filter out some attributes,
see “Select Shapefile Data to Read” on page 2-99 for more information.

How to Construct Geographic Data Structures
Functions such as shaperead or gshhs return geostructs when importing vector geodata. However,
you might want to create geostructs or mapstructs yourself in some circumstances. For example, you
might import vector geodata that is not stored in a shapefile (for example, from a MAT-file, from an
Microsoft® Excel® spreadsheet, or by reading in a delimited text file). You also might compute vector
geodata and attributes by calling various MATLAB or Mapping Toolbox functions. In both cases, the
coordinates and other data are typically vectors or matrices in the workspace. Packaging variables
into a geostruct or mapstruct can make mapping and exporting them easier, because geographic data
structures provide several advantages over coordinate arrays:

• All associated geodata variables are packaged in one container, a structure array.
• The structure is self-documenting through its field names.
• You can vary map symbology for points, lines, and polygons according to their attribute values by

constructing a symbolspec for displaying the geostruct or mapstruct.
• A one-to-one correspondence exists between structure elements and geographic features, which

extends to the children of hggroup objects constructed by mapshow and geoshow.

Achieving these benefits is not difficult. Use the following example as a guide to packaging vector
geodata you import or create into geographic data structures.

Making Point and Line Geostructs

The following example first creates a point geostruct containing three cities on different continents
and plots it with geoshow. Then it creates a line geostruct containing data for great circle
navigational tracks connecting these cities. Finally, it plots these lines using a symbolspec.

1 Begin with a small set of point data, approximate latitudes and longitudes for three cities on
three continents:

latparis =  48.87084; lonparis =   2.41306;   % Paris coords
latsant  = -33.36907; lonsant  = -70.82851;   % Santiago
latnyc   =  40.69746; lonnyc   = -73.93008;   % New York City

2 Build a point geostruct; it needs to have the following required fields:

• Geometry (in this case 'Point')
• Lat (for points, this is a scalar double)
• Lon (for points, this is a scalar double)

% The first field by convention is Geometry (dimensionality).
% As Geometry is the same for all elements, assign it with deal:
[Cities(1:3).Geometry] = deal('Point');

% Add the latitudes and longitudes to the geostruct:
Cities(1).Lat = latparis; Cities(1).Lon = lonparis;
Cities(2).Lat = latsant;  Cities(2).Lon = lonsant;
Cities(3).Lat = latnyc;   Cities(3).Lon = lonnyc;

% Add city names as City fields. You can name optional fields 
% anything you like other than Geometry, Lat, Lon, X, or Y.
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Cities(1).Name = 'Paris';
Cities(2).Name = 'Santiago';
Cities(3).Name = 'New York';
% Inspect your completed geostruct and its first member
Cities    

Cities = 
1x3 struct array with fields:
    Geometry
    Lat
    Lon
    Name

Cities(1)

ans = 
    Geometry: 'Point'
         Lat: 48.8708
         Lon: 2.4131
        Name: 'Paris'

3 Display the geostruct on a Mercator projection of the Earth's land masses stored in the
landareas.shp shapefile, setting map limits to exclude polar regions:

axesm('mercator','grid','on','MapLatLimit',[-75 75]); tightmap; 
% Map the geostruct with the continent outlines
geoshow('landareas.shp')

% Map the City locations with filled circular markers
geoshow(Cities,'Marker','o',...
    'MarkerFaceColor','c','MarkerEdgeColor','k');

% Display the city names using data in the geostruct field Name.
% Note that you must treat the Name field as a cell array.
textm([Cities(:).Lat],[Cities(:).Lon],...
    {Cities(:).Name},'FontWeight','bold');
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4 Next, build a Line geostruct to package great circle navigational tracks between the three cities:

% Call the new geostruct Tracks and give it a line geometry:
[Tracks(1:3).Geometry] = deal('Line');

% Create a text field identifying kind of track each entry is.
% Here they all will be great circles, identified as 'gc'
% (character vector used by certain functions to signify great circle arcs)
trackType = 'gc';
[Tracks.Type] = deal(trackType);

% Give each track an identifying name
Tracks(1).Name = 'Paris-Santiago';
[Tracks(1).Lat Tracks(1).Lon] = ...
        track2(trackType,latparis,lonparis,latsant,lonsant);

Tracks(2).Name = 'Santiago-New York';
[Tracks(2).Lat Tracks(2).Lon] = ...
        track2(trackType,latsant,lonsant,latnyc,lonnyc);

Tracks(3).Name = 'New York-Paris';
[Tracks(3).Lat Tracks(3).Lon] = ...
        track2(trackType,latnyc,lonnyc,latparis,lonparis);

5 Compute lengths of the great circle tracks:

% The distance function computes distance and azimuth between
% given points, in degrees. Store both in the geostruct.
for j = 1:numel(Tracks)
    [dist az] = ...
        distance(trackType,Tracks(j).Lat(1),...
                           Tracks(j).Lon(1),...
                           Tracks(j).Lat(end),...
                           Tracks(j).Lon(end));
    [Tracks(j).Length] = dist;
    [Tracks(j).Azimuth] = az;
end
% Inspect the first member of the completed geostruct
Tracks(1)

ans = 
    Geometry: 'Line'
        Type: 'gc'
        Name: 'Paris-Santiago'
         Lat: [100x1 double]
         Lon: [100x1 double]
      Length: 104.8274
     Azimuth: 235.8143

6 Map the three tracks in the line geostruct:

% On cylindrical projections like Mercator, great circle tracks
% are curved except those that follow the Equator or a meridian.

% Graphically differentiate the tracks by creating a symbolspec;
% key line color to track length, using the 'summer' colormap.
% Symbolspecs make it easy to vary color and linetype by
% attribute values. You can also specify default symbologies.
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colorRange = makesymbolspec('Line',...
            {'Length',[min([Tracks.Length]) ...
              max([Tracks.Length])],...
             'Color',winter(3)});
geoshow(Tracks,'SymbolSpec',colorRange);

You can save the geostructs you just created as shapefiles by calling shapewrite with a file
name of your choice, for example:

shapewrite(Cities,'citylocs');
shapewrite(Tracks,'citytracks');

Making Polygon Geostructs

Creating a geostruct or mapstruct for polygon data is similar to building one for point or line data.
However, if your polygons include multiple, NaN-separated parts, recall that they can have only one
value per attribute, not one value per part. Each attribute you place in a structure element for such a
polygon pertains to all its parts. This means that if you define a group of islands, for example with a
single NaN-separated list for each coordinate, all attributes for that element describe the islands as a
group, not particular islands. If you want to associate attributes with a particular island, you must
provide a distinct structure element for that island.

Be aware that the ordering of polygon vertices matters. When you map polygon data, the direction in
which polygons are traversed has significance for how they are rendered by functions such as
geoshow and mapshow. Proper directionality is particularly important if polygons contain holes. The
Mapping Toolbox convention encodes the coordinates of outer rings (e.g., continent and island
outlines) in clockwise order; counterclockwise ordering is used for inner rings (e.g., lakes and inland
seas). Within the coordinate array, each ring is separated from the one preceding it by a NaN.

When plotted by mapshow or geoshow, clockwise rings are filled. Counterclockwise rings are
unfilled; any underlying symbology shows through such holes. To ensure that outer and inner rings
are correctly coded according to the above convention, you can invoke the following functions:

• ispolycw — True if vertices of polygonal contour are clockwise ordered
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• poly2cw — Convert polygonal contour to clockwise ordering
• poly2ccw — Convert polygonal contour to counterclockwise ordering
• poly2fv — Convert polygonal region to face-vertex form for use with patch in order to properly

render polygons containing holes

Three of these functions check or change the ordering of vertices that define a polygon, and the
fourth one converts polygons with holes to a completely different representation.

For an example of working with polygon geostructs, see “Converting Coastline Data (GSHHG) to
Shapefile Format” on page 2-134.

Mapping Toolbox Version 1 Display Structures
Prior to Version 2, when geostructs and mapstructs were introduced, a different data structure was
employed when importing geodata from certain external formats to encapsulate it for map display
functions. These display structures accommodated both raster and vector map data and other kinds
of objects, but lacked the generality of current geostructs and mapstructs for representing vector
features and are being phased out of the toolbox. However, you can convert display structures that
contain vector geodata to geostruct form using updategeostruct. For more information about
Version 1 display structures and their usage, see “Version 1 Display Structures” in the reference page
for displaym. Additional information is located in reference page for updategeostruct.

See Also
shaperead | shapeinfo

More About
• “Create and Display Polygons” on page 2-8
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Georeferenced Raster Data
Raster geodata consists of georeferenced data grids and images that are stored as matrices or
objects in the MATLAB workspace. While raster geodata looks like any other matrix of real numbers,
what sets it apart is that it is georeferenced, either to the globe or to a specified map projection, so
that each pixel of data occupies a known patch of territory on the planet.

All regular data grids require a reference object, matrix, or vector, that specify the placement and
resolution of the data set. Geolocated data grids do not require a separate reference object, as they
explicitly identify the geographic coordinates of all rows and columns. For details on geolocated
grids, see “Geolocated Data Grids” on page 2-39.

Reference Objects
A spatial reference object encapsulates the relationship between a geographic or planar coordinate
system and a system of intrinsic coordinates anchored to the columns and rows of a 2-D spatially
referenced raster grid or image. A reference object for raster data that is referenced to a geographic
latitude-longitude system can be a GeographicCellsReference or
GeographicPostingsReference object. A referencing object for raster data referenced to a planar
(projected) map coordinate system can be a MapCellsReference or MapPostingsReference
object. Unlike the older referencing matrix and vector representations (described below), a reference
object is self-documenting, providing a rich set of properties to describe both the intrinsic and
extrinsic geometry. The use of reference objects is preferred, but some referencing matrix and vector
functionality continues to be supported for the purpose of compatibility.

Referencing Matrices
A referencing matrix is a 3-by-2 matrix of doubles that describes the scaling, orientation, and
placement of the data grid on the globe. For a given referencing matrix, R, one of the following
relations holds between rows and columns and coordinates (depending on whether the grid is based
on map coordinates or geographic coordinates, respectively):

[x y] = [row col 1] * R, or
[long lat] = [row col 1] * R

Convert a referencing matrix to a raster reference object using the refmatToGeoRasterReference
or refmatToMapRasterReference functions.

Referencing Vectors
In many instances (when the data grid or image is based on latitude and longitude and is aligned with
the geographic graticule), a referencing matrix has more degrees of freedom than the data requires.
In such cases, you may encounter a more compact representation, a three-element referencing
vector. A referencing vector defines the pixel size and northwest origin for a regular, rectangular data
grid:

refvec = [cells-per-degree north-lat west-lon]

This variable is often called refvec (or maplegend). The first element, cells-per-degree, describes
the angular extent of each grid cell (e.g., if each cell covers five degrees of latitude and longitude,
cells-per-degree would be specified as 0.2). Note that if the latitude extent of cells differs from their
longitude extent you cannot use a referencing vector, and instead must specify a referencing object or
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matrix. The second element, north-lat, specifies the northern limit of the data grid (as a latitude), and
the third element, west-lon, specifies the western extent of the data grid (as a longitude). In other
words, north-lat, west-lon is the northwest corner of the data grid. Note, however, that cell (1,1) is
always in the southwest corner of the grid. This need not be the case for grids or images described by
referencing objects or matrices.

Convert a referencing vector to a geographic raster reference object using the
refvecToGeoRasterReference function.
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Construct a Global Data Grid
Imagine an extremely coarse map of the world in which each cell represents 60°. Such a map matrix
would be 3-by-6.

1 Create a 3-by-6 grid:

miniZ = [1 2 3 4 5 6; 7 8 9 10 11 12; 13 14 15 16 17 18];
2 Now make a referencing object:

miniR = georasterref('RasterSize', size(miniZ), ...
   'Latlim', [-90 90], 'Lonlim', [-180 180])

Your output appears like this:

miniR = 

  GeographicCellsReference with properties:

             LatitudeLimits: [-90 90]
            LongitudeLimits: [-180 180]
                 RasterSize: [3 6]
       RasterInterpretation: 'cells'
           ColumnsStartFrom: 'south'
              RowsStartFrom: 'west'
       CellExtentInLatitude: 60
      CellExtentInLongitude: 60
     RasterExtentInLatitude: 180
    RasterExtentInLongitude: 360
           XIntrinsicLimits: [0.5 6.5]
           YIntrinsicLimits: [0.5 3.5]
       CoordinateSystemType: 'geographic'
                  AngleUnit: 'degree'

3 Set up an equidistant cylindrical map projection:

figure('Color','white')
ax = axesm('MapProjection', 'eqdcylin');
axis off
setm(ax,'GLineStyle','-', 'Grid','on','Frame','on')

4 Draw a graticule with parallel and meridian labels at 60° intervals:

setm(ax, 'MlabelLocation', 60, 'PlabelLocation',[-30 30],...
    'MLabelParallel','north', 'MeridianLabel','on',...
    'ParallelLabel','on','MlineLocation',60,...
    'PlineLocation',[-30 30])

5 Map the data using geoshow and display with a color ramp and legend:

geoshow(miniZ, miniR, 'DisplayType', 'texturemap');
colormap('autumn')
colorbar
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Note that the first row of the matrix is displayed at the bottom of the map, while the last row is
displayed at the top.
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Geolocated Data Grids
In addition to regular data grids, the toolbox provides another format for geodata: geolocated data
grids. These multivariate data sets can be displayed, and their values and coordinates can be queried,
but unfortunately much of the functionality supporting regular data grids is not available for
geolocated data grids.

Regular data grids cover simple, regular quadrangles, that is, geographically rectangular and aligned
with parallels and meridians. Geolocated data grids, in addition to these rectangular orientations, can
have other shapes as well.

Define Geolocated Data Grid

To define a geolocated data grid, you must define three variables: a matrix of indices or values
associated with the mapped region, a matrix giving cell-by-cell latitude coordinates, and a matrix
giving cell-by-cell longitude coordinates.

Load a MAT-file containing an irregularly shaped geolocated data grid called mapmtx.

load mapmtx

View the variables created from this MAT-file. Two geolocated data grids are in this data set, each
requiring three variables. The values contained in map1 correspond to the latitude and longitude
coordinates, respectively, in lt1 and lg1. Notice that all three matrices are the same size. Similarly,
map2, lt2, and lg2 together form a second geolocated data grid. These data sets were extracted
from the topo60c data grid. Neither of these maps is regular, because their columns do not run
north to south.

whos

  Name              Size            Bytes  Class     Attributes

  description       1x54              108  char                
  lg1              50x50            20000  double              
  lg2              50x50            20000  double              
  lt1              50x50            20000  double              
  lt2              50x50            20000  double              
  map1             50x50            20000  double              
  map2             50x50            20000  double              
  source            1x43               86  char                

Display the grids one after another to see their geography.

close all
axesm mercator
gridm on
framem on
h1 = surfm(lt1,lg1,map1);
h2 = surfm(lt2,lg2,map2);
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Showing coastlines will help to orient you to these skewed grids. Notice that neither grid is a regular
rectangle. One looks like a diamond geographically, the other like a trapezoid. The trapezoid is
displayed in two pieces because it crosses the edge of the map. These shapes can be thought of as the
geographic organization of the data, just as rectangles are for regular data grids. But, just as for
regular data grids, this organizational logic does not mean that displays of these maps are necessarily
a specific shape.

load coastlines
plotm(coastlat,coastlon,'r')
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Now change the view to a polyconic projection with an origin at 0°N, 90°E. As the polyconic
projection is limited to a 150° range in longitude, those portions of the maps outside this region are
automatically trimmed.

setm(gca,'MapProjection','polycon','Origin',[0 90 0])

 Geolocated Data Grids

2-41



2 Understanding Map Data

2-42



Geographic Interpretations of Geolocated Grids
Mapping Toolbox software supports three different interpretations of geolocated data grids:

• First, a map matrix having the same number of rows and columns as the latitude and longitude
coordinate matrices represents the values of the map data at the corresponding geographic points
(centers of data cells).

• Next, a map matrix having one fewer row and one fewer column than the geographic coordinate
matrices represents the values of the map data within the area formed by the four adjacent
latitudes and longitudes.

• Finally, if the latitude and longitude matrices have smaller dimensions than the map matrix, you
can interpret them as describing a coarser graticule, or mesh of latitude and longitude cells, into
which the blocks of map data are warped.

This section discusses the first two interpretations of geolocated data grids. For more information on
the use of graticules, see “The Map Grid” on page 6-45.

Type 1: Values Associated with the Upper Left Grid Coordinate
As an example of the first interpretation, consider a 4-by-4 map matrix whose cell size is 30-by-30
degrees, along with its corresponding 4-by-4 latitude and longitude matrices:

Z = [ ...
 1  2  3  4; ...
 5  6  7  8; ...
 9 10 11 12; ...
13 14 15 16];

lat = [ ...
  30  30  30  30; ...
   0   0   0   0; ...
 -30 -30 -30 -30; ...
 -60 -60 -60 -60];

lon = [ ...
 0 30 60 90;...
 0 30 60 90;...
 0 30 60 90;...
 0 30 60 90];

Display the geolocated data grid with the values of map shown at the associated latitudes and
longitudes:

figure('Color','white','Colormap',autumn(64))
axesm('pcarree','Grid','on','Frame','on',...
    'PLineLocation',30,'PLabelLocation',30)
mlabel; plabel; axis off; tightmap

h = geoshow(lat,lon,Z,'DisplayType','surface');
set(h,'ZData',zeros(size(Z)))
ht = textm(lat(:),lon(:),num2str(Z(:)), ...
    'Color','blue','FontSize',14);

colorbar('southoutside')
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Notice that only 9 of the 16 total cells are displayed. The value displayed for each cell is the value at
the upper left corner of that cell, whose coordinates are given by the corresponding lat and lon
elements. By convention, the last row and column of the map matrix are not displayed, although they
exist in the CData property of the surface object.

Type 2: Values Centered Within Four Adjacent Coordinates
For the second interpretation, consider a 3-by-3 map matrix with the same lat and lon variables:

delete(h)
delete(ht)

Z3by3 = [ ...
 1  2  3; ...
 4  5  6; ...
 7  8  9];

h = geoshow(lat,lon,Z3by3,'DisplayType','texturemap');

tlat = [ ...
   15 15 15; ...
   -15 -15 -15; ...
   -45 -45 -45];

tlon = [ ...
    15 45 75; ...
    15 45 75; ...
    15 45 74];
    
textm(tlat(:),tlon(:),num2str(Z3by3(:)), ...
    'Color','blue','FontSize',14)

Display a surface plot of the map matrix, with the values of map shown at the center of the associated
cells:

2 Understanding Map Data

2-44



All the map data is displayed for this geolocated data grid. The value of each cell is the value at the
center of the cell, and the latitudes and longitudes in the coordinate matrices are the boundaries for
the cells.

Ordering of Cells
You may have noticed that the first row of the matrix is displayed as the top of the map, whereas for a
regular data grid, the opposite was true: the first row corresponded to the bottom of the map. This
difference is entirely due to how the lat and lon matrices are ordered. In a geolocated data grid, the
order of values in the two coordinate matrices determines the arrangement of the displayed values.

Transform Regular to Geolocated Grids
When required, a regular data grid can be transformed into a geolocated data grid. This simply
requires that a pair of coordinate matrices be computed at the desired spatial resolution from the
regular grid. For example, load elevation raster data and a geographic cells reference object. Then,
create a latitude-longitude grid for the data by calling the geographicGrid function.

load topo60c
[lat,lon] = geographicGrid(topo60cR);        

Transforming Geolocated to Regular Grids
Conversely, a regular data grid can also be constructed from a geolocated data grid. The coordinates
and values can be embedded in a new regular data grid. The function that performs this conversion is
geoloc2grid; it takes a geolocated data grid and a cell size as inputs.
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Spatially Reference Imported Rasters
To associate the elements of a raster with geospatial locations, the raster must be accompanied by
spatial referencing information such as the geographic or world limits, the distance between
recorded samples, and the extent of individual cells. When a supported raster data file contains
spatial referencing information, you can use the readgeoraster function to import the data as an
array and the referencing information as a raster reference object. If the data file does not contain
referencing information, then you can import the data as an array and create a reference object using
the georefcells, georefpostings, maprefcells, or maprefpostings function. The creation
function you use depends on characteristics of the raster data.

• georefcells — The raster is a grid of quadrangular cells referenced to geographic latitude and
longitude coordinates.

• georefpostings — The raster is a grid of posting point samples referenced to geographic
coordinates.

• maprefcells — The raster is a grid of rectangular cells referenced to projected world x- and y-
coordinates.

• maprefpostings — The raster is a grid of posting point samples referenced to projected
coordinates.

Differentiate Between Cells and Postings
This image shows differences between a projected raster of cells and a projected raster of posting
points. Both rasters have elements that are spaced 1 meter apart, with the raster covering x-values in
the range [40,50] in meters and y-values in the range [20,28] in meters. The raster of cells is 8-by-10
and the raster of postings is 9-by-11. The boundary of the raster of cells is made up of the outermost
boundaries of the outermost cells and the boundary of the raster of postings is made up of sampling
points along the edges of the raster.

If you do not know whether your raster is a grid of cells or a grid of posting points, you can try the
following:

• Ask your data provider.
• Search the metadata for information about the spatial registration or interpretation of the data.

Metadata for rasters of cells can contain phrases such as "pixels" or "pixel is area." Metadata for
rasters of posting points can contain phrases such as "grid", "node", or "pixel is point."

• Consider what the data represents. Images are typically made of cells, while elevation grids are
typically made of posting points.

• Consider the size of the raster. If the dimensions of the raster are round numbers, such as a raster
of size [1000 1000], then the raster is probably made of cells. If the dimensions of the raster are
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round numbers plus one, such as a raster of size [1001 1001], then the raster is probably made
of posting points.

Spatially Reference an Image

This example shows how to import an image, spatially reference the image by creating a reference
object, then display the image on a map.

Import an image as an array by using the imread function. The array is of size 500-by-500-by-3 and
specifies the red, green, and blue components of the image.

A = imread('boston_common.jpg');

To spatially reference the image, you must determine the following:

• Whether the image is referenced to geographic or projected coordinates
• Whether the image is made up of cells or posting points

Information included in the file boston_common.txt indicates that the image is referenced to
projected coordinates and is made up of cells. Therefore, you can create a reference object by using
the maprefcells function. Specify the x- and y-limits, also included in the file
boston_common.txt, using world coordinates.

xlimits = [235150 236150];
ylimits = [900100 901100];
R = maprefcells(xlimits,ylimits,size(A));

Define the first row of A as the northernmost edge of the image by setting the ColumnsStartFrom
property of the reference object to 'north'. Otherwise, the ColumnsStartFrom property defaults
to 'south'.

R.ColumnsStartFrom = 'north'; 

Display the spatially referenced image on a map by using the mapshow function.

mapshow(A,R)
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The data used in this example is derived from data provided by MassGIS (Bureau of Geographic
Information). See the file boston_common.txt for more details.

Spatially Reference an Elevation Grid

This example shows how to import elevation data, spatially reference the data by creating a reference
object, then display the data on an axesm-based map.

Load elevation data as an array.

load elevation_n39_w106.mat

To spatially reference the data, you must determine the following:

• Whether the data is referenced to geographic or projected coordinates
• Whether the data is made of cells or posting points

Information in the file elevation_n39_w106.txt indicates that the data set is referenced to
geographic coordinates and is made up of posting points. Therefore, you can create a reference
object for the data by using the georefpostings function. Specify the latitude and longitude limits,
also included in the file boston_common.txt, using degrees.
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latlim = [39 40];
lonlim = [-106 -105];
R = georefpostings(latlim,lonlim,size(elevation_n39_w106));

Create an axesm-based map by specifying the latitude and longitude limits of the data. Then, display
the data as a surface by using the geoshow function. Apply a colormap appropriate for elevation data
by using the demcmap function.

usamap(R.LatitudeLimits,R.LongitudeLimits)
geoshow(elevation_n39_w106,R,'DisplayType','surface')
demcmap(elevation_n39_w106)

The data set used in this example is derived from data provided by the U.S. Geological Survey. See
the file elevation_n39_w106.txt for more details.

See Also
Functions
readgeoraster | georefcells | georefpostings | maprefcells | maprefpostings

Objects
MapCellsReference | GeographicPostingsReference | GeographicCellsReference |
MapPostingsReference
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Mosaic Spatially Referenced Raster Tiles
Geospatial raster data providers commonly package data as adjacent tiles. For example, SRTM Void
Filled elevation data is packaged into 1-degree-by-1-degree tiles. To analyze data spread across
several tiles, such as when calculating line-of-sight visibility, you must mosaic the tiles into a single
raster.

The processes for combining rasters of cells and rasters of posting points are different. For
information on differentiating rasters made up of cells and posting points, see “Spatially Reference
Imported Rasters” on page 2-46.

Before mosaicking tiles, you must ensure that the tiles are adjacent and that the tile boundaries align.
Otherwise, elements of the mosaicked raster can be spatially referenced to the wrong locations.

Mosaic Rasters of Cells

This example shows how to import two adjacent raster data files made of cells, mosaic the data into a
single raster, and display the mosaicked raster on a map.

The files used in this example, concord_ortho_e.tif and concord_ortho_w.tif, contain east-
west adjacent images with concord_ortho_e.tif to the east of concord_ortho_w.tif. The cell
extents and world y-limits of the images are identical.

Import the images using the readgeoraster function. The outputs eastA and westA are arrays that
contain the image data, and the outputs westR and eastR are MapCellsReference objects that
contain spatial referencing information.

[eastA,eastR] = readgeoraster('concord_ortho_e.tif');
[westA,westR] = readgeoraster('concord_ortho_w.tif');

Create a mosaicked raster by combining the arrays. The images are adjacent and are made up of
cells, so the eastern boundary of westA aligns with the western boundary of eastA.

mosaicA = [westA eastA];

Spatially reference the mosaicked raster by creating a raster reference object. You can create a
reference object for a projected raster of cells by using the maprefcells function.

Specify the world x- and y-limits of the raster. The x-limits of the mosaicked raster are the minimum x-
limit of the western raster and the maximum x-limit of the eastern raster. The world y-limits of the
mosaicked raster are the same as the y-limits of the imported rasters. Create the reference object.

xlimits = [westR.XWorldLimits(1) eastR.XWorldLimits(2)];
ylimits = westR.YWorldLimits;
mosaicR = maprefcells(xlimits,ylimits,size(mosaicA));

The columns of arrays imported using the readgeoraster function start from the north. Therefore,
set the ColumnsStartFrom property of the reference object to 'north'.

mosaicR.ColumnsStartFrom = 'north';

Display the mosaicked image on a map by using the mapshow function.

mapshow(mosaicA,mosaicR,'DisplayType','image')
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Mosaic Rasters of Postings

This example shows how to import two adjacent raster data files made of posting points, mosaic the
data into a single raster, and display the mosaicked raster on a map.

The files used in this example, n39_w106_3arc_v2.dt1 and n40_w106_3arc_v2.dt1, contain
north-south adjacent elevation grids with n39_w106_3arc_v2.dt1 to the south of
n40_w106_3arc_v2.dt1. The northern latitude limit of the grid in n39_w106_3arc_v2.dt1 is the
same as the southern latitude limit of the grid in n40_w106_3arc_v2.dt1. The spacing of posting
points and the longitude limits of the grids are identical.

Import the grids using the readgeoraster function. The outputs southZ and northZ are arrays of
type double that contain the elevation data, and the outputs southR and northR are
GeographicPostingsReference objects that contain spatial referencing information.

[southZ,southR] = readgeoraster('n39_w106_3arc_v2.dt1','OutputType','double');
[northZ,northR] = readgeoraster('n40_w106_3arc_v2.dt1','OutputType','double');

Create a mosaicked raster by combining the arrays. The boundaries of posting point rasters are made
up of the outermost posting points, and the columns of arrays imported using the readgeoraster
function start from the north. Therefore, the southernmost row of northZ and the northernmost row
of southZ are the same. To avoid a duplicate row in the mosaicked raster, remove the southernmost
row of northZ before combining the arrays.
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northZ(end,:) = [];
mosaicZ = [northZ; southZ];

Spatially reference the mosaicked raster by creating a raster reference object. You can create a
reference object for a geographic raster of posting points by using the georefpostings function.

Specify the latitude and longitude limits of the raster. The latitude limits are the minimum latitude of
the southern raster and the maximum latitude of the northern raster. The longitude limits of the
mosaicked raster are the same as the longitude limits of the imported rasters. Create the reference
object.

latlim = [southR.LatitudeLimits(1) northR.LatitudeLimits(2)];
lonlim = southR.LongitudeLimits;
mosaicR = georefpostings(latlim,lonlim,size(mosaicZ));

Set the ColumnsStartFrom and GeographicCRS properties of the reference object so that they
match the properties of the imported reference objects.

mosaicR.ColumnsStartFrom = southR.ColumnsStartFrom;
mosaicR.GeographicCRS = southR.GeographicCRS;

Display the mosaicked raster on a map. Create a axesm-based map by specifying the latitude and
longitude limits of the data. Then, display the data as a surface by using the geoshow function. Apply
a colormap appropriate for elevation data by using the demcmap function.

usamap(mosaicR.LatitudeLimits,mosaicR.LongitudeLimits)
geoshow(mosaicZ,mosaicR,'DisplayType','surface')
demcmap(mosaicZ)
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The elevation data used in this example is from the U.S. Geological Survey.

See Also
Functions
georefcells | georefpostings | maprefcells | maprefpostings | readgeoraster

Objects
MapCellsReference | GeographicPostingsReference | GeographicCellsReference |
MapPostingsReference

Related Examples
• “Spatially Reference Imported Rasters” on page 2-46
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Unprojecting a Digital Elevation Model (DEM)

This example shows how to convert a USGS DEM into a regular latitude-longitude grid having
comparable spatial resolution. U.S. Geological Survey (USGS) 30-meter Digital Elevation Models
(DEMs) are regular grids (raster data) that use the UTM coordinate system. Using such DEMs in
applications may require reprojecting and resampling them. You can readily apply the approach show
here to projected map coordinate systems other than UTM and to other DEMs and most types of
regular data grids.

Step 1: Import the DEM and its Metadata

This example uses a USGS DEM for a quadrangle 7.5-arc-minutes square located in the White
Mountains of New Hampshire, USA. Import the data and a map cells reference object using the
readgeoraster function. Get additional metadata using the georasterinfo function.

[Z,R] = readgeoraster('MtWashington-ft.grd','OutputType','double');
info = georasterinfo('MtWashington-ft.grd');

Replace missing data with NaN values.

m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);

Step 2: Get Projection Information

Get information about the projected coordinate reference system by querying the ProjectedCRS
property of the reference object. The result is a projcrs object. Then, get the ellipsoid for the
coordinate reference system.

p = R.ProjectedCRS;
ellipsoid = p.GeographicCRS.Spheroid

ellipsoid = 

referenceEllipsoid with defining properties:

                 Code: 7008
                 Name: 'Clarke 1866'
           LengthUnit: 'meter'
        SemimajorAxis: 6378206.4
        SemiminorAxis: 6356583.8
    InverseFlattening: 294.978698213898
         Eccentricity: 0.0822718542230038

  and additional properties:

    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume
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Step 3: Determine which UTM Zone to Use and Construct a Map

From the Name property of the projcrs object, you can tell that the DEM is gridded in a Universal
Transverse Mercator (UTM) coordinate system.

p.Name

ans = 

    "UTM Zone 19, Northern Hemisphere"

To find the UTM zone, first locate the center of the DEM in UTM coordinates. Then, convert the
coordinates to latitude-longitude.

[M,N] = size(Z);
xCenterIntrinsic = (1 + N)/2;
yCenterIntrinsic = (1 + M)/2;
[xCenter,yCenter] = intrinsicToWorld(R,xCenterIntrinsic,yCenterIntrinsic);
[latCenter,lonCenter] = projinv(p,xCenter,yCenter)

latCenter =

   44.3124

lonCenter =

  -71.3126

Find the UTM zone for the DEM by using the utmzone function.

utmZone = utmzone(latCenter,lonCenter)

utmZone =

    '19T'

Use the zone and ellipsoid to create an axesm-based map.

figure
axesm('utm','zone',utmZone,'geoid',ellipsoid)
axis off
gridm
mlabel on
plabel on
framem on
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Note: if you can visually place the approximate location of New Hampshire on a world map, then you
can confirm this result with the utmzoneui GUI.

  utmzoneui(actualZone)

Step 4: Display the Original DEM on the Map

Use mapshow (rather than geoshow or meshm) to display the DEM on the map because the data are
gridded in map (x-y) coordinates.

mapshow(Z,R,'DisplayType','texturemap')
demcmap(Z)
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The DEM covers such a small part of this map that it may be hard to see (look between 44 and 44
degrees North and 72 and 71 degrees West), because the map limits are set to cover the entire UTM
zone. You can reset them (as well as the map grid and label parameters) to get a closer look.

setm(gca,'MapLatLimit',[44.2 44.4],'MapLonLimit',[-71.4 -71.2])
setm(gca,'MLabelLocation',0.05,'MLabelRound',-2)
setm(gca,'PLabelLocation',0.05,'PLabelRound',-2)
setm(gca,'PLineLocation',0.025,'MLineLocation',0.025)
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When it is viewed at this larger scale, narrow wedge-shaped areas of uniform color appear along the
edge of the grid. These are places where Z contains the value NaN, which indicates the absence of
actual data. By default they receive the first color in the color table, which in this case is dark green.
These null-data areas arise because although the DEM is gridded in UTM coordinates, its data limits
are defined by a latitude-longitude quadrangle. The narrow angle of each wedge corresponds to the
non-zero "grid declination" of the UTM coordinate system in this part of the zone. (Lines of constant x
run precisely north-south only along the central meridian of the zone. Elsewhere, they follow a slight
angle relative to the local meridians.)

Step 5: Define the Output Latitude-Longitude Grid

The next step is to define a regularly-spaced set of grid points in latitude-longitude that covers the
area within the DEM at about the same spatial resolution as the original data set.

First, you need to determine how the latitude changes between rows in the input DEM (i.e., by
moving northward by 30 meters).

rng = R.CellExtentInWorldY;  % In meters, consistent with p.LengthUnit
latcrad = deg2rad(latCenter);   % latCenter in radians

% Change in latitude, in degrees
dLat = rad2deg(meridianfwd(latcrad,rng,ellipsoid) - latcrad)

dLat =
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   2.6998e-04

The actual spacing can be rounded slightly to define the grid spacing to be used for the output
(latitude-longitude) grid.

gridSpacing = 1/4000;   % In other words, 4000 samples per degree

To set the extent of the output (latitude-longitude) grid, start by finding the corners of the DEM in
UTM map coordinates.

xCorners = R.XWorldLimits([1 1 2 2])'
yCorners = R.YWorldLimits([1 2 2 1])'

xCorners =

      310380
      310380
      320730
      320730

yCorners =

     4901880
     4916040
     4916040
     4901880

Then convert the corners to latitude-longitude. Display the latitude-longitude corners on the map (via
the UTM projection) to check that the results are reasonable.

[latCorners, lonCorners] = projinv(p,xCorners, yCorners)
hCorners = geoshow(latCorners,lonCorners,'DisplayType','polygon',...
    'FaceColor','none','EdgeColor','red');

latCorners =

   44.2474
   44.3748
   44.3774
   44.2500

lonCorners =

  -71.3749
  -71.3801
  -71.2502
  -71.2454
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Next, round outward to define an output latitude-longitude quadrangle that fully encloses the DEM
and aligns with multiples of the grid spacing.

latSouth = gridSpacing * floor(min(latCorners)/gridSpacing)
lonWest  = gridSpacing * floor(min(lonCorners)/gridSpacing)
latNorth = gridSpacing * ceil( max(latCorners)/gridSpacing)
lonEast  = gridSpacing * ceil( max(lonCorners)/gridSpacing)

qlatlim = [latSouth latNorth];
qlonlim = [lonWest lonEast];

dlat = 100*gridSpacing;
dlon = 100*gridSpacing;

[latquad, lonquad] = outlinegeoquad(qlatlim, qlonlim, dlat, dlon);

hquad = geoshow(latquad, lonquad, ...
    'DisplayType','polygon','FaceColor','none','EdgeColor','blue');

snapnow;

latSouth =

   44.2473

lonWest =
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  -71.3803

latNorth =

   44.3775

lonEast =

  -71.2452

Finally, construct a geographic raster referencing object for the output grid. It supports
transformations between latitude-longitude and the row and column subscripts. In this case, use of a
world file matrix, W, enables exact specification of the grid spacing. Display W with more decimal
places by temporarily changing the default display format.

currentFormat = format; % since R2021a
format longG
W = [gridSpacing    0              lonWest + gridSpacing/2; ...
     0              gridSpacing    latSouth + gridSpacing/2]
format(currentFormat)

W =
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                   0.00025                         0                -71.380125
                         0                   0.00025                 44.247375

nRows = round((latNorth - latSouth) / gridSpacing)
nCols = round(wrapTo360(lonEast - lonWest) / gridSpacing)

nRows =

   521

nCols =

   540

Rlatlon = georasterref(W,[nRows nCols],'cells');
Rlatlon.GeographicCRS = p.GeographicCRS

Rlatlon = 

  GeographicCellsReference with properties:

             LatitudeLimits: [44.24725 44.3775]
            LongitudeLimits: [-71.38025 -71.24525]
                 RasterSize: [521 540]
       RasterInterpretation: 'cells'
           ColumnsStartFrom: 'south'
              RowsStartFrom: 'west'
       CellExtentInLatitude: 1/4000
      CellExtentInLongitude: 1/4000
     RasterExtentInLatitude: 0.13025
    RasterExtentInLongitude: 0.135
           XIntrinsicLimits: [0.5 540.5]
           YIntrinsicLimits: [0.5 521.5]
       CoordinateSystemType: 'geographic'
              GeographicCRS: [1x1 geocrs]
                  AngleUnit: 'degree'

Rlatlon fully defines the number and location of each cell in the output grid.

Step 6: Map Each Output Grid Point Location to UTM X-Y

Finally, you're ready to make use of the map projection, applying it to the location of each point in the
output grid. First compute the latitudes and longitudes of those points, stored in 2-D arrays.

[rows,cols] = ndgrid(1:nRows, 1:nCols);
[lat,lon] = intrinsicToGeographic(Rlatlon,cols,rows);

Then apply the projection to each latitude-longitude pair, arrays of UTM x-y locations having the same
shape and size as the latitude-longitude arrays.

[XI,YI] = projfwd(p,lat,lon);
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At this point, XI(i,j) and YI(i,j) specify the UTM coordinate of the grid point corresponding to
the i-th row and j-th column of the output grid.

Step 7: Resample the Original DEM

The final step is to use the MATLAB interp2 function to perform bilinear resampling.

At this stage, the value of projecting from the latitude-longitude grid into the UTM map coordinate
system becomes evident: it means that the resampling can take place in the regular X-Y grid, making
interp2 applicable. The reverse approach, unprojecting each (X,Y) point into latitude-longitude,
might seem more intuitive but it would result in an irregular array of points to be interpolated -- a
much harder task, requiring use of the far more costly griddata function or some rough equivalent.

[rows,cols] = ndgrid(1:M,1:N);
[X,Y] = intrinsicToWorld(R,cols,rows);
method = 'bilinear';
extrapval = NaN;
Zlatlon = interp2(X,Y,Z,XI,YI,method,extrapval);

View the result in the projected axes using geoshow, which will re-project it on the fly. Notice that it
fills the blue rectangle, which is aligned with lines of latitude and longitude. (In contrast, the red
rectangle, which outlines the original DEM, aligns with UTM x and y.) Also notice NaN-filled regions
along the edges of the grid. The boundaries of these regions appear slightly jagged, at the level of a
single grid spacing, due to round-off effects during interpolation. Move the red quadrilateral and blue
quadrangle to the top, to ensure that they are not hidden by the raster display.

geoshow(Zlatlon,Rlatlon,'DisplayType','texturemap')
uistack([hCorners hquad],'top')
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Credits

MtWashington-ft.grd (and supporting files):

  United States Geological Survey (USGS) 7.5-minute Digital Elevation
  Model (DEM) for the Mt. Washington quadrangle, with elevation in
  meters. http://edc.usgs.gov/products/elevation/dem.html

  For more information, run:

  >> type MtWashington-ft.txt

See Also
refmatToMapRasterReference | intrinsicToWorld | intrinsicToGeographic |
georasterref | demcmap
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Georeferencing an Image to an Orthotile Base Layer

This example shows how to register an image to an earth coordinate system and create a new
"georeferenced" image. It requires Image Processing Toolbox™ in addition to Mapping Toolbox™.

In this example, all georeferenced data are in the same earth coordinate system, the Massachusetts
State Plane system (using the North American Datum of 1983 in units of meters). This defines our
"map coordinates." The georeferenced data include an orthoimage base layer and a vector road layer.

The data set to be georeferenced is a digital aerial photograph covering parts of the village of West
Concord, Massachusetts, collected in early spring, 1997.

Step 1: Render Orthoimage Base Tiles in Map Coordinates

The orthoimage base layer is structured into 4000-by-4000 pixel tiles, with each pixel covering
exactly one square meter in map coordinates. Each tile is stored as a TIFF image with a world file.
The aerial photograph of West Concord overlaps two tiles in the orthoimage base layer. (For
convenience, this example actually works with two 2000-by-2000 sub-tiles extracted from the larger
4000-by-4000 originals. They have the same pixel size, but cover only the area of interest.)

Read the two orthophoto base tiles required to cover the extent of the aerial image.

[baseImage1,R1,cmap1] = readgeoraster("concord_ortho_w.tif");
[baseImage2,R2,cmap2] = readgeoraster("concord_ortho_e.tif");

Display the images in their correct spatial positions.

mapshow(baseImage1,cmap1,R1)
ax1 = gca;
mapshow(ax1,baseImage2,cmap2,R2)
title("Map View, Massachusetts State Plane Coordinates");
xlabel("Easting (meters)");
ylabel("Northing (meters)");
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Step 2: Register Aerial Photograph to Map Coordinates

This step uses functions cpselect, cpstruct2pairs, fitgeotform2d, and imwarp, and method
projtform2d/transformPointsForward, from the Image Processing Toolbox together with map
raster reference objects from Mapping Toolbox. Together, they enable georegistration based on
control point pairs that relate the aerial photograph to the orthoimage base layer.

Read the aerial photo.

inputImage = imread("concord_aerial_sw.jpg");
figure
imshow(inputImage)
title("Unregistered Aerial Photograph")
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Both orthophoto images are indexed images but cpselect only takes grayscale images, so convert
them to grayscale.

baseGray1 = im2uint8(ind2gray(baseImage1,cmap1));
baseGray2 = im2uint8(ind2gray(baseImage2,cmap2));

Downsample the images by a factor of 2, then pick two separate sets of control point pairs: one for
points in the aerial image that appear in the first tile, and another for points that appear in the
second tile. Save the control point pairs to the base workspace as control point structures named
cpstruct1 and cpstruct2.

n = 2; % downsample by a factor n
load mapexreg.mat % load some points that were already picked

Optionally, edit or add to the pre-picked points using cpselect. Note that you need to work
separately on the control points for each orthotile.

cpselect(inputImage(1:n:end,1:n:end,1),...
         baseGray1(1:n:end,1:n:end),cpstruct1);

cpselect(inputImage(1:n:end,1:n:end,1),...
         baseGray2(1:n:end,1:n:end),cpstruct2);

This tool helps you pick pairs of corresponding control points. Control points are landmarks that you
can find in both images, like a road intersection, or a natural feature. Three pairs of control points
have already been picked for each orthophoto tile. If you want to proceed with these points, go to
Step 3: Infer and apply geometric transformation. If you want to add some additional pairs of points,
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do so by identifying landmarks and clicking on the images. Save control points by choosing the File
menu, then the Save Points to Workspace option. Save the points, overwriting variables
cpstruct1 and cpstruct2.

Step 3: Infer and Apply Geometric Transformation

Extract control point pairs from the control point structures.

[input1,base1] = cpstruct2pairs(cpstruct1);
[input2,base2] = cpstruct2pairs(cpstruct2);

Account for downsampling by factor n.

input1 = n*input1 - 1;
input2 = n*input2 - 1;
base1 = n*base1 - 1;
base2 = n*base2 - 1;

Transform base image coordinates into map (State Plane) coordinates.

[x1, y1] = intrinsicToWorld(R1,base1(:,1),base1(:,2));
[x2, y2] = intrinsicToWorld(R2,base2(:,1),base2(:,2));

Combine the two sets of control points and infer a projective transformation. (The projective
transformation should be a reasonable choice, since the aerial image is from a frame camera and the
terrain in this area is fairly gentle.)

input = [input1; input2];
spatial = [x1 y1; x2 y2];

tform = fitgeotform2d(input,spatial,"projective")

tform = 

  projtform2d with properties:

    Dimensionality: 2
                 A: [3×3 double]

Compute and plot (2D) residuals.

residuals = transformPointsForward(tform, input) - spatial;
figure
plot(residuals(:,1),residuals(:,2),"+")
title("Control Point Residuals");
xlabel("Easting offset (meters)");
ylabel("Northing offset (meters)");
xlim([-4 4])
ylim([-4 4])
axis equal
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Predict corner locations for the registered image, in map coordinates, and connect them to show the
image outline.

mInput = size(inputImage,1);
nInput = size(inputImage,2);

inputCorners = 0.5 ...
    + [0        0;
       0        mInput;
       nInput   mInput;
       nInput   0;
       0        0];

outputCornersSpatial = transformPointsForward(tform, inputCorners);

outputCornersX = outputCornersSpatial(:,1);
outputCornersY = outputCornersSpatial(:,2);

figure(ax1.Parent)
line(outputCornersX,outputCornersY,"Color","w")
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Calculate the average pixel size of the input image (in map units).

pixelSize = [hypot( ...
    outputCornersX(2) - outputCornersX(1), ...
    outputCornersY(2) - outputCornersY(1)) / mInput, ...
 hypot( ...
    outputCornersX(4) - outputCornersX(5), ...
    outputCornersY(4) - outputCornersY(5)) / nInput]

pixelSize =

    0.9096    0.8905

Variable pixelSize gives a starting point from which to select a width and height for the pixels in
our georegistered output image. In principle we could select any size at all for our output pixels.
However, if we make them too small we waste memory and computation time, ending up with a big
(many rows and columns) blurry image. If we make them too big, we risk aliasing the image as well
as needlessly discarding information in the original image. In general we also want our pixels to be
square. A reasonable heuristic is to select a pixel size that is slightly larger than max(pixelSize)
and is a "reasonable" number (i.e., 0.95 or 1.0 rather than 0.9096). Here we chose 1, which means
that each pixel in our georegistered image will cover one square meter on the ground. It's "nice" to
have georegistered images that align along integer map coordinates for display and analysis.

outputPixelSize = 1;
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Choose world limits that are integer multiples of the output pixel size.

xWorldLimits = outputPixelSize ...
    * [floor(min(outputCornersX) / outputPixelSize), ...
        ceil(max(outputCornersX) / outputPixelSize)]

yWorldLimits = outputPixelSize ...
    * [floor(min(outputCornersY) / outputPixelSize), ...
        ceil(max(outputCornersY) / outputPixelSize)]

xWorldLimits =

      208154      209693

yWorldLimits =

      911435      912583

Display a bounding box for the registered image.

line(xWorldLimits([1 1 2 2 1]),yWorldLimits([2 1 1 2 2]),"Color","red")

The dimensions of the registered image will be as follows:

mOutput = diff(yWorldLimits) / outputPixelSize
nOutput = diff(xWorldLimits) / outputPixelSize
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mOutput =

        1148

nOutput =

        1539

Create an Image Processing Toolbox referencing object for the registered image.

R = imref2d([mOutput nOutput],xWorldLimits,yWorldLimits)

R = 

  imref2d with properties:

           XWorldLimits: [208154 209693]
           YWorldLimits: [911435 912583]
              ImageSize: [1148 1539]
    PixelExtentInWorldX: 1
    PixelExtentInWorldY: 1
    ImageExtentInWorldX: 1539
    ImageExtentInWorldY: 1148
       XIntrinsicLimits: [0.5000 1.5395e+03]
       YIntrinsicLimits: [0.5000 1.1485e+03]

Create a map raster reference object, which is the Mapping Toolbox counterpart to an Image
Processing Toolbox referencing object.

Rmap = maprefcells(R.XWorldLimits,R.YWorldLimits, R.ImageSize, ...
    "ColumnsStartFrom","north")

Rmap = 

  MapCellsReference with properties:

            XWorldLimits: [208154 209693]
            YWorldLimits: [911435 912583]
              RasterSize: [1148 1539]
    RasterInterpretation: 'cells'
        ColumnsStartFrom: 'north'
           RowsStartFrom: 'west'
      CellExtentInWorldX: 1
      CellExtentInWorldY: 1
    RasterExtentInWorldX: 1539
    RasterExtentInWorldY: 1148
        XIntrinsicLimits: [0.5 1539.5]
        YIntrinsicLimits: [0.5 1148.5]
      TransformationType: 'rectilinear'
    CoordinateSystemType: 'planar'
            ProjectedCRS: []
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Apply the geometric transformation using imwarp. Flip its output so that the columns run from north
to south.

registered = flipud(imwarp(inputImage, tform,"OutputView",R));
figure
imshow(registered)

You can write the registered image as a TIFF with a world file, thereby georeferencing it to our map
coordinates.

imwrite(registered,"concord_aerial_sw_reg.tif");
worldfilewrite(Rmap,getworldfilename("concord_aerial_sw_reg.tif"));

Step 4: Display the Registered Image in Map Coordinates

Display the registered image on the same (map coordinate) axes as the orthoimage base tiles. The
registered image does not completely fill its bounding box, so it includes null-filled triangles. Create
an alpha data mask to make these fill areas render as transparent.

alphaData = registered(:,:,1);
alphaData(alphaData~=0) = 255;

figure
mapshow(baseImage1,cmap1,R1)
ax2 = gca;
mapshow(ax2,baseImage2,cmap2,R2)
title("Map View, Massachusetts State Plane Coordinates");
xlabel("Easting (meters)");
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ylabel("Northing (meters)");

mInput = mapshow(ax2,registered,Rmap);
mInput.AlphaData = alphaData;

You can assess the registration by looking at features that span both the registered image and the
orthophoto images.

Step 5: Overlay Vector Road Layer (from Shapefile)

Use shapeinfo and readgeotable to learn about the attributes of the vector road layer. Render the
roads on the same axes and the base tiles and registered image.

roadsfile = "concord_roads.shp";
roadinfo = shapeinfo(roadsfile);
roads = readgeotable(roadsfile);

Create symbolization based on the CLASS attribute (the type of road). Note that very minor roads
have CLASS values equal to 6, so don't display them.

roadspec = makesymbolspec("Line",{'CLASS',6,'Visible','off'});

mapshow(ax2,roads,"SymbolSpec",roadspec,"Color","cyan")
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Observe that the roads line up quite well with the roads in the images. Two obvious linear features
in the images are not roads but railroads. The linear feature that trends roughly east-west and
crosses both base tiles is the Fitchburg Commuter Rail Line of the Massachusetts Bay Transportation
Agency. The linear feature that trends roughly northwest-southeast is the former Framingham-Lowell
secondary line.

Credits

concord_orthow_w.tif, concord_ortho_e.tif, concord_roads.shp:

  Office of Geographic and Environmental Information (MassGIS),
  Commonwealth of Massachusetts  Executive Office of Environmental Affairs
  http://www.state.ma.us/mgis

  For more information, run:

  >> type concord_ortho.txt
  >> type concord_roads.txt

concord_aerial_sw.jpg

  Visible color aerial photograph courtesy of mPower3/Emerge.

  For more information, run:
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  >> type concord_aerial_sw.txt

See Also
Functions
readgeoraster | im2uint8 | cpstruct2pairs | intrinsicToWorld | fitgeotform2d |
transformPointsForward | imref2d

Objects
MapCellsReference
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Find Geospatial Data Online

Many vector and raster data formats have been developed for storing geospatial data. With Mapping
Toolbox you can read geodata files in general purpose formats (e.g., Esri® shapefile, GeoTIFF, and
SDTS DEM) that a variety of mapping and image processing applications also read and write. You can
also read files that are in a variety of special formats designed to exchange specific sets or kinds of
geodata (e.g., GSHHG, VMAP0, DEM, and DTED files). You can order, and in many cases, download
such data over the Internet.

Mapping Toolbox provides generalized sample data in the form of data files for the entire Earth and
its major regions, as well as some higher resolution files covering small areas. These data sets are
frequently used in the code examples provided in the Mapping Toolbox documentation.

In addition, the worlddatamap function, available on MATLAB Central, allows you to use worldmap
to map a region using data from a shapefile or data grid. Examples of worlddatamap and world
vector data in shapefile format are available under the heading worlddatamap Examples.

For information about a small but useful subset of geodata resources on the Internet, see the
following topics:

Note MathWorks does not warrant the accuracy, timeliness, or fitness for use of any data set listed in
these topics, and makes no endorsement of any data vendor mentioned.

• “Find Geospatial Vector Data” on page 2-78 — Lists URLs from which you can obtain vector
(point, line, or polygon) geospatial data sets and data products, such as Esri shape files.

• “Find Geospatial Raster Data” on page 2-79 — Lists URLs from which you can obtain raster
(gridded) geospatial data sets and data products, such as Digital Terrain Elevation Data (DTED).
This topic also covers raster maps from Web Map Service servers.

Note If you are viewing this documentation installed locally (controlled by your Documentation
location preference), you should also consult “Find Geospatial Data Online” on page 2-77 on the
MathWorks website for possible updates and corrections.

 Find Geospatial Data Online

2-77

https://www.mathworks.com/matlabcentral/fileexchange/7550-worlddatamap
https://www.mathworks.com/matlabcentral/fileexchange/7550-worlddatamap


Find Geospatial Vector Data

Find and download geospatial vector (point, line, or polygon) data using resources such as the ones in
these tables. For information about supported file formats, see the readgeotable function.

Note If you are using a Macintosh system and the links on this page do not work, open the Mapping
Toolbox documentation in a separate browser and view this section there. You can find this topic by
searching for "Find Geospatial Vector Data".

Resource Provider Examples of Products and
Data Sets

The National Map Download
Application

US Geological Survey (USGS) USGS National Boundary
Dataset

Advanced Weather Interactive
Processing System (AWIPS)
Basemap Shapefiles

National Oceanic and
Atmospheric Administration
(NOAA)

Canada provincial boundaries
(data link), Mexico state
boundaries (data link)

Geography Program US Census TIGER/Line shapefiles and
geodatabases, cartographic
boundary files

Data.gov US General Services
Administration

Agriculture, climate, energy,
local government

NOAA Shoreline Website NOAA US coastlines, historical data
Shoreline / Coastline Resources NOAA and National Centers for

Environmental Information
(NCEI)

Global Self-Consistent
Hierarchical High-Resolution
Geography (GSHHG) (read
using the gshhs function)

See Also
Functions
readgeotable | readtable | shaperead | shapeinfo

See Also

More About
• “Find Geospatial Data Online” on page 2-77
• “Find Geospatial Raster Data” on page 2-79
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Find Geospatial Raster Data
In this section...
“Download Data” on page 2-79
“Use Web Map Service Data” on page 2-80

Get geospatial raster data over the Internet by downloading it or by accessing the Web Map Service
(WMS) database.

Download Data
Find and download geospatial raster data using resources such as the ones in these tables. For
information about supported file formats, see readgeoraster and worldfileread.

Note If you are using a Macintosh system and the links on this page do not work, open the Mapping
Toolbox documentation in a separate browser and view this section there. You can find this topic by
searching for "Find Geospatial Raster Data".

Elevation

Resource Provider Examples of Products and
Data Sets

EarthExplorer US Geological Survey (USGS) DTED, GMTED2010, GTOPO30
The National Map Download
Application

USGS 3DEP

Data.gov US General Services
Administration

DTED, 3DEP, GMTED2010

ETOPO1 Global Relief Model National Oceanic and
Atmospheric Administration
(NOAA) and National Centers
for Environmental Information
(NCEI)

ETOPO1 (use GeoTIFF format)

GMTED2010 Viewer USGS GMTED2010
The Global Land One-km Base
Elevation Project

NOAA and NCEI GLOBE

Global Topography Scripps Institution of
Oceanography

Smith and Sandwell

Land Cover Classification

Resource Provider Examples of Products and
Data Sets

EarthExplorer USGS GLCC, AVHRR
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Resource Provider Examples of Products and
Data Sets

Digital Coast Data Access
Viewer

NOAA Office for Coastal
Management

C-CAP Regional Land Cover and
Change

Data.gov US General Services
Administration

GLCC, AVHRR

Imagery

Resource Provider Examples of Products and
Data Sets

EarthExplorer USGS Landsat
Digital Coast Data Access
Viewer

NOAA Office for Coastal
Management

High-Resolution Orthoimagery

Data.gov US General Services
Administration

Landsat

Use Web Map Service Data
Mapping Toolbox includes a built-in database of prequalified Web Map Service (WMS) servers and
layers. Search the WMS database for layers using the wmsfind function. Read layers from the
database using the wmsread function.

See Also
readgeoraster | worldfileread
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Functions that Read and Write Geospatial Data
The following table lists Mapping Toolbox functions that read geospatial data products and file
formats and write geospatial data files. Note that the geoshow and mapshow functions can read and
display both vector and raster geodata files in several formats. Click function names to see their
details in the Mapping Toolbox reference documentation. The Type of Coordinates column describes
whether the function returns or writes data in geographic ("geo") or projected ("map") coordinates,
or as geolocated data grids (which, for the functions listed, all contain geographic coordinates). Some
functions can return either geographic or map coordinates, depending on what the file being read
contains; these functions do not signify what type of coordinates they return (in the case of
shaperead, however, you can specify whether the structure it returns should have X and Y or Lon
and Lat fields).

Function Description Type of Data Type of
Coordinates

avhrrgoode Read data products derived from the
Advanced Very High Resolution Radiometer
(AVHRR) and stored in the Goode
Homosoline projection: Global Land Cover
Classification (GLCC) or Normalized
Difference Vegetation Index (NDVI)

raster geolocated

avhrrlambert Read AVHRR GLCC and NDVI data products
stored in the Lambert Conformal Conic
projection

raster geolocated

dteds List DTED data grid file names for a
specified latitude-longitude quadrangle

file names geo

egm96geoid Read 15-minute gridded geoid heights from
the EGM96 geoid model

raster geo

georasterinfo Get information about data files in formats
such as Esri Binary Grid, Esri GridFloat,
DTED, GeoTIFF, and GPX

raster map

geo
geotiffinfo Get information about GeoTIFF files properties map

geo
geotiffwrite Write GeoTIFF file raster map

geo
getworldfilename Derive a world file name from an image file

name
file name geo

map
globedems List GLOBE data file names for a specified

latitude-longitude quadrangle
file names geo

gshhs Read Global Self-Consistent Hierarchical
High-Resolution Geography (GSHHG) data

vector geo

gtopo30s List GTOPO30 data file names for a
specified latitude-longitude quadrangle

file names geo
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Function Description Type of Data Type of
Coordinates

kmlwrite Write vector coordinates and attributes to a
file in KML format

vector points
and attributes

geo

readgeoraster Read data in formats such as Esri Binary
Grid, Esri GridFloat, DTED, GeoTIFF, and
GPX

raster geo

map
readgeotable Read data in formats such as shapefile,

GPX, Esri file geodatabase, KML, and
GeoJSON

vector geo

map
sdtsinfo Get information about SDTS data set properties geo
shapeinfo Get information about the geometry and

attributes of geographic features stored in a
shapefile (a set of ".shp", ".shx" and ".dbf"
files)

properties geo

map

shaperead Read geographic feature coordinates and
associated attributes from a shapefile

vector geo

map
shapewrite Write geospatial data and associated

attributes in shapefile format
vector geo

map
usgsdems List USGS digital elevation model (DEM)

file names covering a specified latitude-
longitude quadrangle

file names map

vmap0data Extract selected data from the Vector Map
Level 0 (VMAP0) CD-ROMs

vector geo

vmap0read Read a VMAP0 file vector geo
vmap0rhead Read VMAP0 file headers properties geo
worldfileread Read a world file and return a referencing

matrix
georeferencing
information

geo

worldfilewrite Export a referencing matrix into an
equivalent world file

georeferencing
information

geo

The MATLAB environment provides many general file reading and writing functions (for example,
imread, imwrite, urlread, and urlwrite) which you can use to access geospatial data you want
to use with Mapping Toolbox software. For example, you can read a TIFF image with imread and its
accompanying world file with worldfileread to import the image and construct a referencing
matrix to georeference it. See the Mapping Toolbox example “Georeferencing an Image to an
Orthotile Base Layer” on page 2-65 for an example of how you can do this.
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Export Vector Geodata
When you want to share geodata you are working with, Mapping Toolbox functions can export it two
principal formats, shapefiles and KML files. Shapefiles are binary files that can contain point, line,
vector, and polygon data plus attributes. Shapefiles are widely used to exchange data between
different geographic information systems. KML files are text files that can contain the same type of
data, and are used mainly to upload geodata the Web. The toolbox functions shapewrite and
kmlwrite export to these formats.

To format attributes, shapewrite uses an auxiliary structure called a DBF spec, which you can
generate with the makedbfspec function. Similarly, you can provide attributes to kmlwrite to
format as a table by providing an attribute spec, a structure you can generate using the
makeattribspec function or create manually.

For examples of and additional information about reading and writing shapefiles and DBF specs, see
the documentation for shapeinfo, shaperead, shapewrite, and makedbfspec. The example
provided in “How to Construct Geographic Data Structures” on page 2-30 also demonstrates
exporting vector data using shapewrite. For information about creating KML files, see “Export KML
Files for Viewing in Earth Browsers” on page 2-95.
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Exporting Vector Data to KML

This example shows how to structure geographic point, line, and polygon vector data and export it to
a Keyhole Markup Language (KML) file. KML is an XML-based markup language designed for
visualizing geographic data on Web-based maps or "Earth browsers", such as Google Earth™, Google
Maps™, NASA WorldWind, and the Esri® ArcGIS™ Explorer.

The following functions write geographic data to a KML file:

• kmlwritepoint — Write geographic points to KML file
• kmlwriteline — Write geographic line to KML file
• kmlwritepolygon — Write geographic polygon to KML file
• kmlwrite — Write geographic data to KML file

Define an Output Folder for the KML Files

This example creates several KML files and uses the variable kmlFolder to denote their location.
The value used here is determined by the output of the tempdir command, but you could easily
customize this.

kmlFolder = tempdir;

Create a cell array of the KML file names used in this example in order to optionally remove them
from your KML output folder when the example ends.

kmlFilenames = {};

Create a Function Handle to Open an Earth Browser

A KML file can be opened in a variety of "Earth browsers", Web maps, or an editor. You can customize
the following anonymous function handle to open a KML file. Executing this function handle launches
the Google Earth browser, which must be installed on your computer. You can use the application by
assigning the variable useApplication to true in your workspace or assign it to true here.

useApplication = exist('useApplication','var') && useApplication;

if useApplication
    if ispc
        % On Windows(R) platforms display the KML file with:
        openKML = @(filename) winopen(filename);
    elseif ismac
        % On Mac platforms display the KML file with:
        cmd = 'open -a Google\ Earth ';
        openKML = @(filename) system([cmd filename]);
    else
        % On Linux platforms display the KML file with:
        cmd = 'googleearth ';
        openKML = @(filename) system([cmd filename]);
    end
else
    % No "Earth browser" is installed on the system.
    openKML = @(filename) disp('');
end
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Example 1: Write Single Point to KML File

This example writes a single point to a KML file.

Assign latitude and longitude values for Paderborn, Germany.

lat = 51.715254;
lon = 8.75213;

Use kmlwritepoint to write the point to a KML file.

filename = fullfile(kmlFolder,'Paderborn.kml');
kmlwritepoint(filename,lat,lon);

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 2: Write Single Point to KML File with Icon and Description

This example writes a single point to a KML file. The placemark includes an icon and a description
with HTML markup.

Assign latitude and longitude coordinates for a point that locates the headquarters of MathWorks® in
Natick, Massachusetts.

lat = 42.299827;
lon = -71.350273;

Create a description for the placemark. Include HTML tags in the description to add new lines for the
address.

description = sprintf('%s<br>%s</br><br>%s</br>', ...
   '3 Apple Hill Drive', 'Natick, MA. 01760', ...
   'https://www.mathworks.com');

Assign iconFilename to a GIF file on the local system's network.

iconDir = fullfile(matlabroot,'toolbox','matlab','icons');
iconFilename = fullfile(iconDir,'matlabicon.gif');

Assign the name for the placemark.

name = 'The MathWorks, Inc.';

Use kmlwritepoint to write the point and associated data to the KML file.

filename = fullfile(kmlFolder,'MathWorks.kml');
kmlwritepoint(filename,lat,lon,'Description',description,'Name',name, ...
   'Icon',iconFilename);

Open the KML file.

openKML(filename)
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Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 3: Write Multiple Points to KML File

This example writes the locations of cities in France to a KML file, including the names of the cities,
and removes the default description table.

Read world cities data from the shapefile called worldcities.shp into a geospatial table. Create a
subtable containing the data for cities in France.

worldcities = readgeotable("worldcities.shp");
n = ["Paris" "Lyon" "Nantes" "Bordeaux" "Marseille"];
rows = ismember(worldcities.Name,n);
cities = worldcities(rows,:);

Write the data in the subtable to a KML file by using kmlwrite. Assign the name of the placemark to
the name of the city. Remove the default description since the data has only one attribute.

filename = fullfile(kmlFolder,'French_Cities.kml');
kmlwrite(filename,cities,'Name',cities.Name,'Description',{});

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 4: Write Multiple Points to KML File with Modified Attribute Table

This example writes placemarks at the locations of tsunami events, reported over several decades
and tagged geographically by source location, to a KML file.

Read the data from the shapefile called tsunamis.shp as a geospatial table.

tsunamis = readgeotable('tsunamis.shp','CoordinateSystemType','geographic');

Create an attribute specification.

attribspec = makeattribspec(tsunamis);

Remove all attributes from the specification, except for the attributes describing the maximum
height, cause, year, location, and country.

desiredAttributes = {'Max_Height','Cause','Year','Location','Country'};
allAttributes = fieldnames(attribspec);
attributes = setdiff(allAttributes,desiredAttributes);
attribspec = rmfield(attribspec,attributes)

attribspec = struct with fields:
          Year: [1x1 struct]
         Cause: [1x1 struct]
       Country: [1x1 struct]
      Location: [1x1 struct]
    Max_Height: [1x1 struct]
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Rename the Max_Height attribute to Maximum Height and highlight each attribute label in bold
font.

attribspec.Max_Height.AttributeLabel = "<b>Maximum Height</b>";
attribspec.Cause.AttributeLabel = "<b>Cause</b>";
attribspec.Year.AttributeLabel = "<b>Year</b>";
attribspec.Location.AttributeLabel = "<b>Location</b>";
attribspec.Country.AttributeLabel = "<b>Country</b>";

Add Meters to the format of the maximum height attribute. Set the format of the year attribute to
include no decimal places.

attribspec.Max_Height.Format = "%.1f Meters";
attribspec.Year.Format = "%.0f";

Export the selected attributes and tsunami source locations to a KML file by using the kmlwrite
function.

filename = fullfile(kmlFolder,'Tsunami_Events.kml');
name = tsunamis.Location;
kmlwrite(filename,tsunamis,'Description',attribspec,'Name',name)

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 5: Write Single Point with a LookAt Virtual Camera to KML File

This example writes a single point with a LookAt virtual camera near Machu Picchu, Peru

Use a geopoint vector to define a LookAt virtual camera.

lat = -13.163111;
lon = -72.544945;
lookAt = geopoint(lat,lon);
lookAt.Range = 1500;
lookAt.Heading = 260;
lookAt.Tilt = 67;

Use kmlwritepoint to write the point location and LookAt information.

filename = fullfile(kmlFolder, 'Machu_Picchu.kml');
alt = 2430;
name = 'Machu Picchu';
kmlwritepoint(filename,lat,lon,alt,'LookAt',lookAt,'Name',name);

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;
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Example 6: Write Single Point with a Camera to KML File

This example writes a single point with a camera view of the Washington Monument in Washington
D.C to a KML file. The marker is placed at the ground location of the camera.

Construct the camera.

camlat = 38.889301;
camlon = -77.039731;
camera = geopoint(camlat,camlon);
camera.Altitude = 500;
camera.Heading = 90;
camera.Tilt = 45;
camera.Roll = 0;

Use kmlwritepoint to write the point location and Camera information.

name = 'Camera ground location';
lat = camera.Latitude;
lon = camera.Longitude;
filename = fullfile(kmlFolder,'WashingtonMonument.kml');
kmlwritepoint(filename,lat,lon,'Camera',camera,'Name',name)

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 7: Write Address Data to KML File

This example writes unstructured address data to a KML file.

Create a cell array containing names of several places of interest in the Boston area.

names = {'Boston', ...
    'Massachusetts Institute of Technology', ...
    'Harvard University', ...
    'Fenway Park', ...
    'North End'};

Create a cell array containing addresses for the places of interest in the Boston area.

addresses = { ...
    'Boston, MA', ...
    '77 Massachusetts Ave, Cambridge, MA 02139', ...
    'Massachusetts Hall, Cambridge MA 02138', ...
    '4 Yawkey Way, Boston, MA', ...
    '134 Salem St, Boston, MA'};

Use a Google Maps icon for each of the placemarks.

icon = 'http://maps.google.com/mapfiles/kml/paddle/red-circle.png';

Use kmlwrite to write the cell array of addresses to the KML file.
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filename = fullfile(kmlFolder, 'Places_of_Interest.kml');
kmlwrite(filename,addresses,'Name',names,'Icon',icon,'IconScale',1.5);

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 8: Write Single Line to KML File

This example writes a single line connecting the top of Mount Washington to the Mount Washington
Hotel in Carroll, New Hampshire, to a KML file.

Assign coordinate values for the region of interest.

lat_Mount_Washington = 44.270489039;
lon_Mount_Washington = -71.303246453;

lat_Mount_Washington_Hotel = 44.258056;
lon_Mount_Washington_Hotel = -71.440278;

lat = [lat_Mount_Washington lat_Mount_Washington_Hotel];
lon = [lon_Mount_Washington lon_Mount_Washington_Hotel];

Set the altitude to 6 feet, for the approximate height of a person.

alt = 6 * unitsratio('meters', 'feet');

Add a camera viewpoint from the Mount Washington Hotel.

clat = lat(2);
clon = lon(2);
camera = geopoint(clat,clon,'Altitude',2,'Tilt',90,'Roll',0,'Heading',90);

Use kmlwriteline to write the arrays to a KML file.

filename = fullfile(kmlFolder, 'Mount_Washington.kml');
name = 'Mount Washington';
kmlwriteline(filename,lat,lon,alt,'Name',name,'Color','k','Width',3, ...
    'Camera',camera,'AltitudeMode','relativeToGround');

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 9: Write GPS Track Log to KML File

This example writes a GPS track log to a KML file.

Read the track points log from the GPX file. The data in the log was obtained from a GPS wristwatch
held while gliding over Mount Mansfield in Vermont, USA, on August 28, 2010.
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track = readgeotable('sample_mixed.gpx','Layer','track_points');

Write the log to a KML file by using the kmlwriteline function. The elevation values obtained by
the GPS are relative to sea level.

filename = fullfile(kmlFolder,'GPS_Track_Log.kml');
lat = track.Shape.Latitude;
lon = track.Shape.Longitude;
alt = track.Elevation;
name = 'GPS Track Log';
kmlwriteline(filename,lat,lon,alt,'Name',name,'Color','k','Width',2, ...
    'AltitudeMode','relativeToSeaLevel');

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 10: Write Circles to KML File

This example writes circles as lines around London City Airport to a KML file. The example includes a
LookAt virtual camera.

Assign latitude and longitude values for the center of the feature.

lat0 = 51.50487;
lon0 = .05235;

Assign azimuth to [] to compute a complete small circle. Use the WGS84 ellipsoid.

azimuth = [];
spheroid = wgs84Ellipsoid;

Compute small circles of 3000, 2000, and 1000 meter radius. Assign a color value of 'blue',
'green', and 'red' for each circle. Assign an elevation value of 100 meters (above ground) for each
circle. Use a line geoshape vector to contain the data.

radius = 3000:-1000:1000;
colors = {'blue','green','red'};
elevation = 100;
circles = geoshape(0,0,'Name','','Color','','Elevation',elevation);
for k = 1:length(radius)
    [lat, lon] = scircle1(lat0,lon0,radius(k),azimuth,spheroid);
    circles(k).Latitude = lat;
    circles(k).Longitude = lon;
    circles(k).Name = [num2str(radius(k)) ' Meters'];
    circles(k).Color = colors{k};
    circles(k).Elevation = elevation;
end

Use a geopoint vector to define a LookAt virtual camera with a viewpoint from the east of the airport
and aligned with the runway.

lat = 51.503169;
lon =  0.105478;
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range = 3500;
heading = 270;
tilt =  60;
lookAt = geopoint(lat,lon,'Range',range,'Heading',heading,'Tilt',tilt);

Use kmlwrite to write the geoshape vector containing the circles and associated data to a KML file.

filename = fullfile(kmlFolder,'Small_Circles.kml');
kmlwrite(filename,circles,'AltitudeMode','relativeToGround','Width',2, ...
    'Name',circles.Name,'Color',circles.Color,'LookAt',lookAt);

Open the KML file. Using Google Earth, the LookAt view point is set when clicking on either one of
the 1000 Meters, 2000 Meters, or 3000 Meters strings in the Places list.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 11: Write Circular Polygons to KML File

This example writes circular polygons around London City Airport to a KML file. It includes a LookAt
virtual camera and uses the same data calculated in step 9.

Change the Geometry property value of the geoshape vector to 'polygon'. The polygons are drawn
in the same order as the geoshape vector and are indexed from largest to smallest radii, thus each
polygon will be visible in the browser.

circles.Geometry = 'polygon';

Change the elevation of each polygon.

circles.Elevation = 1000:1000:3000;

Use a geopoint vector to define a LookAt virtual camera with a viewpoint from the east of the airport,
aligned with the runway, and with a view of all three polygons.

lat = 51.501587;
lon = 0.066147;
range = 13110;
heading = 270;
tilt = 60;
lookAt = geopoint(lat,lon,'Range',range,'Heading',heading,'Tilt',tilt);

Use kmlwrite to write the polygon geoshape vector containing the circular polygons and associated
data to a KML file. Extrude the polygons to the ground. Set the polygon edge color to black and
assign a face alpha value to provide visibility inside the polygon.

filename = fullfile(kmlFolder,'Small_Circle_Polygons.kml');
name = circles.Name;
color = circles.Color;
kmlwrite(filename,circles,'AltitudeMode','relativeToGround','Extrude',true, ...
    'Name',name,'FaceColor',color,'EdgeColor','k','FaceAlpha',.6,'LookAt',lookAt);

Open the KML file. Using Google Earth, the LookAt view point is set when clicking on either one of
the 1000 Meters, 2000 Meters, or 3000 Meters strings in the Places list.

openKML(filename)
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Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 12: Write Polygon Data from Shapefile to KML file

This example writes polygon data from the shapefile called usastatelo.shp to a KML file. The
polygon faces are set with a color appropriate for political regions. The polygon faces are set with an
alpha value to provide visibility inside the polygon.

states = readgeotable('usastatelo.shp');
colors = polcmap(height(states));
name = states.Name;
filename = fullfile(kmlFolder,'usastatelo.kml');
kmlwrite(filename,states,'Name',name,'FaceColor',colors,'FaceAlpha',0.6, ...
    'EdgeColor','k')

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 13: Write Polygon Contours to KML File

This example contours a grid in a local coordinate system, returns the contours in a geographic
system, and writes the polygon contours to a KML file.

Create a grid in a local system.

X = -150000:10000:150000;
Y =  0:10000:300000;
[xmesh, ymesh] = meshgrid(X/50000, (Y - 150000)/50000);
Z = 8 + peaks(xmesh, ymesh);

Define a local geodetic origin near Frankfurt, Germany and an ellipsoidal height.

lat0 = 50.108;
lon0 = 8.6732;
h0 = 100;

Define contour levels.

levels = 0:2:18;

Contour the grid and return the output in a polygon geoshape vector.

[~, contourPolygons] = geocontourxy(X,Y,Z,lat0,lon0,h0,'LevelList',levels);

Output the contours to a KML file. Set the faces with an alpha value. Set CutPolygons to false
since the altitude values are not uniform. Clamp the polygons to the ground.

colors = parula(length(contourPolygons));
filename = fullfile(kmlFolder,'Contour_Polygons.kml');
kmlwrite(filename,contourPolygons,'FaceColor',colors,'FaceAlpha',.6, ...
    'EdgeColor','k','CutPolygons',false,'AltitudeMode','clampToGround')
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Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 14: Write Polygon with Inner Ring to KML File

This example constructs a polygon with an inner ring around the Eiffel Tower and writes the polygon
to a KML file. The polygon's altitude is set to 500 meters above ground.

lat0 = 48.858288;
lon0 = 2.294548;
outerRadius = .02;
innerRadius = .01;
[lat1,lon1] = scircle1(lat0,lon0,outerRadius);
[lat2,lon2] = scircle1(lat0,lon0,innerRadius);
[lon2,lat2] = poly2ccw(lon2,lat2);
lat = [lat1; NaN; lat2];
lon = [lon1; NaN; lon2];
alt = 500;
filename = fullfile(kmlFolder,'EiffelTower.kml');

Export the polygon to a KML file. Set the edge color to black, the face color to cyan, and the face
alpha value.

kmlwritepolygon(filename,lat,lon,alt,'EdgeColor','k','FaceColor','c', ...
    'FaceAlpha',.5) 

Open the KML file.

openKML(filename) 

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Delete Generated KML Files

Optionally, delete the new KML files from your KML output folder.

if ~useApplication
    for k = 1:length(kmlFilenames)
        delete(kmlFilenames{k})
    end
end

Data Set Information

The data in worldcities.shp is from the Digital Chart of the World (DCW) browser layer, published
by the U.S. National Geospatial-Intelligence Agency (NGA), formerly the National Imagery and
Mapping Agency (NIMA). For more information about the data set, use the command type
worldcities.txt.

The data in tsunamis.shp is from the Global Tsunami Database, U.S. National Geospatial Data
Center (NGDC), National Oceanic and Atmospheric Administration (NOAA). For more information
about the data set, use the command type tsunamis.txt.
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The data in usastatelo.shp is based on data from the CIA World DataBank II and the U.S. Census
Bureau site "State and County QuickFacts". For more information about the data set, use the
command type usastatelo.txt. For an updated link to the U.S. Census Bureau site "State and
County QuickFacts", see https://www.census.gov/quickfacts/fact/table/US/PST045221.

See Also
kmlwrite | kmlwritepolygon | kmlwriteline | kmlwritepoint
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Export KML Files for Viewing in Earth Browsers
Keyhole Markup Language (KML) is an XML dialect for formatting 2-D and 3-D geodata for display in
"Earth browsers," such as Google Earth™ mapping service, Google Maps™ mapping service, Google
Mobile™ wireless service, and NASA WorldWind. Other Web browser applications, such as Yahoo!®

Pipes, also support KML either by rendering or generating files. A KML file specifies a set of features
(placemarks, images, polygons, 3-D models, textual descriptions, etc.) and how they are to be
displayed in browsers and applications.

Each place must at least have an address or a longitude and a latitude. Places can also have textual
descriptions, including hyperlinks. KML files can also specify display styles for markers, lines and
polygons, and "camera view" parameters such as tilt, heading, and altitude. You can generate
placemarks in KML files for individual points and sets of points that include attributes in table form.
You can include HTML markups in these tables, with or without hyperlinks, but you cannot currently
control the camera view of a placemark. (However, the users of an Earth browser can generally
control their views of it).

Generate a Single Placemark Using kmlwritepoint
This example shows how to generate a placemark using kmlwritepoint by specifying the latitude
and longitude that identifies a location. This example also specifies the icon used for the placemark
and the text that appears in the balloon associated with the placemark.
lat =  42.299827;
lon = -71.350273;
description = sprintf('%s<br>%s</b><br>%s</b>', ...
    '3 Apple Hill Drive', 'Natick, MA. 01760', ...
    'https://www.mathworks.com');
name = 'The MathWorks, Inc.';
iconFilename = ...
    'https://www.mathworks.com/products/product_listing/images/ml_icon.gif';
iconScale = 1.0;
filename = 'MathWorks.kml';
kmlwritepoint(filename, lat, lon, ...
    'Description', description, 'Name', name, ...
    'Icon', iconFilename, 'IconScale', iconScale);

This code produces the following KML file.
<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
   <Document>
      <name>MathWorks</name>
      <Placemark>
         <Snippet maxLines="0"> </Snippet>
         <description>3 Apple Hill Drive<br>Natick, MA. 01760</b>;
                      <br>https://www.mathworks.com</b>;
         </description>
         <name>The MathWorks, Inc.</name>
         <Style>
            <IconStyle>
               <Icon>
                 <href>
                   https://www.mathworks.com/products/product_listing/images/ml_icon.gif
                 </href>
               </Icon>
               <scale>1</scale>
            </IconStyle>
         </Style>
         <Point>
            <coordinates>-71.350273,42.299827,0.0</coordinates>
         </Point>
      </Placemark>
   </Document>
</kml>
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If you view this in an Earth Browser, notice that the text inside the placemark, "https://
www.mathworks.com," was automatically rendered as a hyperlink. The Google Earth service also
adds a link called "Directions". kmlwritepoint does not include location coordinates in placemarks.
This is because it is easy for users to read out where a placemark is by mousing over it or by viewing
its Properties dialog box.

Generate Placemarks from Addresses
This example shows how to generate a placemark using street addresses or more general addresses
such as postal codes, city, state, or country names, instead of latitude and longitude information. If
the viewing application is capable of looking up addresses, such placemarks can be displayed in
appropriate, although possibly imprecise, locations. (Note that the Google Maps service does not
support address-based placemarks.)

When you use addresses, kmlwrite creates an <address> element for each placemark rather than
<point> elements containing <coordinates> elements. For example, here is code for kmlwrite
that generates address-based placemarks for three cities in Australia from a cell array:

  address = {'Perth, Australia', ...
             'Melbourne, Australia', ...
             'Sydney, Australia'};
  filename = 'Australian_Cities.kml';
  kmlwrite(filename, address, 'Name', address);

The generated KML file has the following structure and content:

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
   <Document>
      <name>Australian_Cities</name>
      <Placemark>
         <Snippet maxLines="0"> </Snippet>
         <description> </description>
         <name>Perth, Australia</name>
         <address>Perth, Australia</address>
      </Placemark>
      <Placemark>
         <Snippet maxLines="0"> </Snippet>
         <description> </description>
         <name>Melbourne, Australia</name>
         <address>Melbourne, Australia</address>
      </Placemark>
      <Placemark>
         <Snippet maxLines="0"> </Snippet>
         <description> </description>
         <name>Sydney, Australia</name>
         <address>Sydney, Australia</address>
      </Placemark>
   </Document>
</kml>

Export Point Geostructs to Placemarks
This example shows how to read data from shapefiles and generate a KML file that identifies all or
selected attributes, which you can then view in an earth browser such as Google Earth. It also shows
how to customize placemark icons and vary them according to attribute values.
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The Mapping Toolbox tsunamis shapefiles contain a database of 162 tsunami events reported
between 1950 and 2006, described as point locations with 21 variables (including 18 attributes). You
can type out the metadata file tsunamis.txt to see the definitions of all the data fields. The steps
below select some of these from the shapefiles and display them as tables in exported KML
placemarks.

1 Read the tsunami shapefiles, selecting certain attributes.

There are several ways to select attributes from shapefiles. One is to pass shaperead a cell
array of attribute names in the Attributes parameter. For example, you might just want to map
the maximum wave height, the suspected cause, and also show the year, location and country for
each event. Set up a cell array with the corresponding attribute field names as follows,
remembering that field names are case-sensitive.

attrs = {'Max_Height','Cause','Year','Location','Country'};

Since the data file uses latitude and longitude coordinates, you need to specify
'UseGeoCoords',true to ensure that shaperead returns a geostruct (having Lat and Lon
fields).

tsunamis = shaperead('tsunamis.shp','useGeoCoords',true,...
                     'Attributes',attrs);

Look at the first record in the tsunamis geostruct returned by shaperead.

tsunamis(1)

           Geometry: 'Point'
           Lon: 128.3000
           Lat: -3.8000
    Max_Height: 2.8000
         Cause: 'Earthquake'
          Year: 1950
      Location: 'JAVA TRENCH, INDONESIA'
       Country: 'INDONESIA'

2 Export the tsunami data to a KML file with kmlwrite

By default, kmlwrite outputs all attribute data in a geostruct to a KML formatted file as an
HTML table containing unstyled text. When you view it, the Google Earth program supplies a
default marker.

kmlfilename = 'tsunami1.kml';
kmlwritepoint(kmlfilename,tsunamis(1).Lat,tsunamis(1).Lon);

3 View the placemarks in an earth browser. For example, you can view KML files with the Google
Earth browser, which must be installed on your computer.

For Windows, use the winopen function:

winopen(filename)

For Linux, if the file name is a partial path, use the following commands:

cmd = 'googleearth ';
fullfilename = fullfile(pwd, filename);   
system([cmd fullfilename])

For Mac, if the file name is a partial path, use the following commands:
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cmd = 'open -a Google\ Earth '
fullfilename = fullfile(pwd, filename);   
system([cmd fullfilename])

4 Customize the placemark contents

To customize the HTML table in the placemark, use the makeattribspec function. Create an
attribute spec for the tsunamis geostruct and inspect it.

attribspec = makeattribspec(tsunamis)

attribspec = 
    Max_Height: [1x1 struct]
         Cause: [1x1 struct]
          Year: [1x1 struct]
      Location: [1x1 struct]
       Country: [1x1 struct]

Format the label for Max_Height as bold text, give units information about Max_Height, and
also set the other attribute labels in bold.

attribspec.Max_Height.AttributeLabel = '<b>Maximum Height</b>';
attribspec.Max_Height.Format = '%.1f Meters';
attribspec.Cause.AttributeLabel = '<b>Cause</b>';
attribspec.Year.AttributeLabel = '<b>Year</b>';
attribspec.Year.Format = '%.0f';
attribspec.Location.AttributeLabel = '<b>Location</b>';
attribspec.Country.AttributeLabel = '<b>Country</b>';

When you use the attribute spec, all the attributes it lists are included in the placemarks
generated by kmlwrite unless you remove them from the spec manually (e.g., with rmfield).

5 Customize the placemark icon

You can specify your own icon using kmlwrite to use instead of the default pushpin symbol. The
black-and-white bullseye icon used here is specified as URL for an icon in the Google KML
library.

iconname = ...
  'http://maps.google.com/mapfiles/kml/shapes/placemark_circle.png';
kmlwritepoint(kmlfilename,tsunamis(1).Lat,tsunamis(1).Lon, ...
  'Description',attribspec,'Name',{tsunamis(1).Location}, ...
  'Icon',iconname,'IconScale',2);

6 Vary placemark size by tsunami height

To vary the size of placemark icons, specify an icon file and a scaling factor for every observation
as vectors of names (all the same) and scale factors (all computed individually) when writing a
KML file. Scale the width and height of the markers to the log of Max_Height. Scaling factors
for point icons are data-dependent and can take some experimenting with to get right.

% Create vector with log2 exponents of |Max_Height| values
[loghgtx loghgte] = log2([tsunamis.Max_Height]);
% Create a vector replicating the icon URL
iconnames = cellstr(repmat(iconname,numel(tsunamis),1));
kmlwritepoint(kmlfilename,tsunamis(1).Lat,tsunamis(1).Lon,
    'Description',attribspec,...
    'Name',{tsunamis(1).Location},'Icon',iconname,...
    'IconScale',loghgte);
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Select Shapefile Data to Read
The shaperead function provides you with a powerful method, called a selector, to select only the
data fields and items you want to import from shapefiles.

A selector is a cell array with two or more elements. The first element is a handle to a predicate
function (a function with a single output argument of type logical). Each remaining element is a
character vector indicating the name of an attribute.

For a given feature, shaperead supplies the values of the attributes listed to the predicate function
to help determine whether to include the feature in its output. The feature is excluded if the predicate
returns false. The converse is not necessarily true: a feature for which the predicate returns true
may be excluded for other reasons when the selector is used in combination with the bounding box or
record number options.

The following examples are arranged in order of increasing sophistication. Although they use
MATLAB function handles, anonymous functions, and nested functions, you do not need to be familiar
with these features to use the selectors for shaperead.

Example 1: Predicate Function in Separate File
1 Define the predicate function in a separate file. (Prior to Release 14, this was the only option

available.) Create a file named roadfilter.m, with the following contents:

 function result = roadfilter(roadclass,roadlength)
 mininumClass = 4;
 minimumLength = 200;
 result = (roadclass  >= mininumClass) && ...
          (roadlength >= minimumLength);
 end

2 You can then call shaperead like this:

roadselector = {@roadfilter, 'CLASS', 'LENGTH'}

roadselector = 
    @roadfilter    'CLASS'    'LENGTH'

s = shaperead('concord_roads.shp', 'Selector', roadselector)

s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

or, in a slightly more compact fashion, like this:

s = shaperead('concord_roads.shp',...
              'Selector', {@roadfilter, 'CLASS', 'LENGTH'})
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s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

Prior to Version 7 of the Mapping Toolbox software, putting the selector in a file or local function
of its own was the only way to work with a selector.

Note that if the call to shaperead took place within a function, then roadfilter could be
defined in a local function thereof rather than in a file of its own.

Example 2: Predicate as Function Handle
As a simple variation on the previous example, you could assign a function handle, roadfilterfcn,
and use it in the selector:

roadfilterfcn = @roadfilter
s = shaperead('concord_roads.shp',...
              'Selector', {roadfilterfcn, 'CLASS', 'LENGTH'})
roadfilterfcn = 
@roadfilter
s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

Example 3: Predicate as Anonymous Function
Having to define predicate functions in files of their own, or even as local functions, may sometimes
be awkward. Anonymous functions allow the predicate function to be defined right where it is
needed. For example:

roadfilterfcn = ...
    @(roadclass, roadlength) (roadclass >= 4) && ...
    (roadlength >= 200)

roadfilterfcn = 
    @(roadclass, roadlength) (roadclass >= 4) ...
               && (roadlength >= 200)

s = shaperead('concord_roads.shp','Selector', ...
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              {roadfilterfcn, 'CLASS', 'LENGTH'})

s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

Example 4: Predicate (Anonymous Function) Defined Within Cell Array
There is actually no need to introduce a function handle variable when defining the predicate as an
anonymous function. Instead, you can place the whole expression within the selector cell array itself,
resulting in somewhat more compact code. This pattern is used in many examples throughout the
Mapping Toolbox documentation and function help.

s = shaperead('concord_roads.shp', 'Selector', ...
    {@(roadclass, roadlength)...
    (roadclass >= 4) && (roadlength >= 200),...
    'CLASS', 'LENGTH'})

s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH

Example 5: Parametrizing the Selector; Predicate as Nested Function
In the previous patterns, the predicate involves two hard-coded parameters (called minimumClass
and minimumLength in roadfilter.m), as well as the roadclass and roadlength input
variables. If you use any of these patterns in a program, you need to decide on minimum cut-off
values for roadclass and roadlength at the time you write the program. But suppose that you
wanted to wait and decide on parameters like minimumClass and minimumLength at run time?

Fortunately, nested functions provide the additional power that you need to do this; they allow you to
utilize workspace variables in as parameters, rather than requiring that the parameters be hard-
coded as constants within the predicate function. In the following example, the workspace variables
minimumClass and minimumLength could have been assigned through a variety of computations
whose results were unknown until run-time, yet their values can be made available within the
predicate as long as it is defined as a nested function. In this example the nested function is wrapped
in a file called constructroadselector.m, which returns a complete selector: a handle to the
predicate (named nestedroadfilter) and the two attribute names:
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 function roadselector = ...
     constructroadselector(minimumClass, minimumLength)
 roadselector = {@nestedroadfilter, 'CLASS', 'LENGTH'};
     function result = nestedroadfilter(roadclass, roadlength)
         result = (roadclass  >= minimumClass) && ...
                  (roadlength >= minimumLength);
     end
 end

The following four lines show how to use constructroadselector:

minimumClass = 4;     % Could be run-time dependent
minimumLength = 200;  % Could be run-time dependent

roadselector = constructroadselector(...
    minimumClass, minimumLength);

s = shaperead('concord_roads.shp', 'Selector', roadselector)

s = 
115x1 struct array with fields:
    Geometry
    BoundingBox
    X
    Y
    STREETNAME
    RT_NUMBER
    CLASS
    ADMIN_TYPE
    LENGTH
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Export Images and Raster Grids to GeoTIFF

This example shows how to write data referenced to standard geographic and projected coordinate
systems to GeoTIFF files, using geotiffwrite. The Tagged-Image File Format (TIFF) has emerged
as a popular format to store raster data. The GeoTIFF specification defines a set of TIFF tags that
describe "Cartographic" information associated with the TIFF raster data. Using these tags,
geolocated imagery or raster grids with coordinates referenced to a Geographic Coordinate System
(latitude and longitude) or a (planar) Projected Coordinate System can be stored in a GeoTIFF file.

Setup: Define a Data Folder and File Name Utility Function

This example creates several temporary GeoTIFF files and uses the variable datadir to denote their
location. The value used here is determined by the output of the tempdir command, but you could
easily customize this. The contents of datadir are deleted at the end of the example.

datadir = fullfile(tempdir, 'datadir');
if ~exist(datadir, 'dir')
   mkdir(datadir)
end

Define an anonymous function to prepend datadir to the input file name:

datafile = @(filename)fullfile(datadir, filename);

Example 1: Write an Image Referenced to Geographic Coordinates

Write an image referenced to WGS84 geographic coordinates to a GeoTIFF file. The original image
(boston_ovr.jpg) is stored in JPEG format, with referencing information external to the image file, in
the "world file" (boston_ovr.jgw). The image provides a low resolution "overview" of Boston,
Massachusetts, and the surrounding area.

Read the image from the JPEG file.

basename = 'boston_ovr';
imagefile = [basename '.jpg'];
A1 = imread(imagefile);

Obtain a referencing object from the world file.

worldfile = getworldfilename(imagefile);
R1 = worldfileread(worldfile,'geographic',size(A1));

Write the image to a GeoTIFF file.

filename1 = datafile([basename '.tif']);
geotiffwrite(filename1,A1,R1)

Return information about the file as a RasterInfo object. Note that the value of
CoordinateReferenceSystem is a geographic coordinate reference system object.

info1 = georasterinfo(filename1);
info1.CoordinateReferenceSystem

ans = 
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  geocrs with properties:

             Name: "WGS 84"
            Datum: "World Geodetic System 1984"
         Spheroid: [1×1 referenceEllipsoid]
    PrimeMeridian: 0
        AngleUnit: "degree"

Re-import the new GeoTIFF file and display the Boston overview image, correctly located, on a map.

figure
usamap(R1.LatitudeLimits,R1.LongitudeLimits)
setm(gca,'PLabelLocation',0.05,'PlabelRound',-2,'PlineLocation',0.05)
geoshow(filename1)
title('Boston Overview')

Example 2: Write a Data Grid Referenced to Geographic Coordinates

Load elevation raster data and a geographic cells reference object. Write the data grid to a GeoTIFF
file.

load topo60c
Z2 = topo60c;
R2 = topo60cR;
filename2 = datafile('topo60c.tif');
geotiffwrite(filename2,Z2,R2)
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The values in the data grid range from -7473 to 5731. Display the grid as a texture-mapped surface
rather than as an intensity image.

figure
worldmap world
gridm off
setm(gca,'MLabelParallel',-90,'MLabelLocation',90)
tmap = geoshow(filename2,'DisplayType','texturemap');
demcmap(tmap.CData)
title('Elevation Data Grid')

Example 3: Change Data Organization of GeoTIFF Files

When you write data using geotiffwrite or read data using readgeoraster, the columns of the
data grid start from north and the rows start from west. For example, the input data from
topo60c.mat starts from south, but the output data from topo60c.tif starts from north.

R2.ColumnsStartFrom
[Z3,R3] = readgeoraster(filename2);
R3.ColumnsStartFrom

ans =

    'south'

ans =
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    'north'

Therefore, the input data and data in the GeoTIFF file is flipped.

isequal(Z2,flipud(Z3))

ans =

  logical

   1

If you need the data in your workspace to match again, then flip the Z values and set the referencing
object such that the columns start from the south:

R3.ColumnsStartFrom = 'south';
Z3 = flipud(Z3);
isequal(Z2,Z3)

ans =

  logical

   1

The data in the GeoTIFF file is encoded with positive scale values. Therefore, when you view the file
with ordinary TIFF-viewing software, the northern edge of the data set is at the top. To make the data
layout in the output file match the data layout of the input, you can construct a Tiff object and use it
to reset some of the tags and the image data.

t = Tiff(filename2,'r+');

pixelScale = getTag(t,'ModelPixelScaleTag');
pixelScale(2) = -pixelScale(2);
setTag(t,'ModelPixelScaleTag',pixelScale);

tiepoint = getTag(t,'ModelTiepointTag');
tiepoint(5) = intrinsicToGeographic(R2,0.5,0.5);
setTag(t,'ModelTiepointTag',tiepoint);

setTag(t,'Compression', Tiff.Compression.None)

write(t,Z2);

rewriteDirectory(t)
close(t)

Verify the referencing object and data grid from the input data match the output data file. To do this,
read the Tiff image and create a reference object. Then, compare the grids.

t = Tiff(filename2);
Atiff = read(t);
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close(t)
Rtiff = georefcells(R2.LatitudeLimits,R2.LongitudeLimits,size(Atiff));

isequal(Z2,Atiff)
isequal(R2,Rtiff)

ans =

  logical

   1

ans =

  logical

   1

Example 4: Write an Image Referenced to a Projected Coordinate System

Write the Concord orthophotos to a single GeoTIFF file. The two adjacent (west-to-east)
georeferenced grayscale (panchromatic) orthophotos cover part of Concord, Massachusetts, USA.
The concord_ortho.txt file indicates that the data are referenced to the Massachusetts Mainland
(NAD83) State Plane Projected Coordinate System. Units are meters. This corresponds to the
GeoTIFF code number 26986 as noted in the GeoTIFF specification at http://geotiff.maptools.org/
spec/geotiff6.html#6.3.3.1 under PCS_NAD83_Massachusetts.

Read the two orthophotos.

[X_west,R_west] = readgeoraster('concord_ortho_w.tif');
[X_east,R_east] = readgeoraster('concord_ortho_e.tif');

Combine the images and reference objects.

X4 = [X_west X_east];
R4 = R_west;
R4.XWorldLimits = [R_west.XWorldLimits(1) R_east.XWorldLimits(2)];
R4.RasterSize = size(X4);

Write the data to a GeoTIFF file. Use the code number, 26986, indicating the
PCS_NAD83_Massachusetts Projected Coordinate System.

coordRefSysCode = 26986;
filename4 = datafile('concord_ortho.tif');
geotiffwrite(filename4,X4,R4,'CoordRefSysCode',coordRefSysCode)

Return information about the file as a RasterInfo object. Note that the value of
CoordinateReferenceSystem is a projected coordinate reference system object.

info4 = georasterinfo(filename4);
info4.CoordinateReferenceSystem

ans = 
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  projcrs with properties:

                    Name: "NAD83 / Massachusetts Mainland"
           GeographicCRS: [1×1 geocrs]
        ProjectionMethod: "Lambert Conic Conformal (2SP)"
              LengthUnit: "meter"
    ProjectionParameters: [1×1 map.crs.ProjectionParameters]

Display the combined Concord orthophotos.

figure
mapshow(filename4)
title('Combined Orthophotos')
xlabel('MA Mainland State Plane easting, meters')
ylabel('MA Mainland State Plane northing, meters')

Example 5: Write a Cropped Image from a GeoTIFF File

Write a subset of a GeoTIFF file to a new GeoTIFF file.

Read the RGB image and referencing information from the boston.tif GeoTIFF file.

[A5,R5] = readgeoraster('boston.tif');

Crop the image.

2 Understanding Map Data

2-108



xlimits = [ 764318  767677];
ylimits = [2951122 2954482];
[A5crop,R5crop] = mapcrop(A5,R5,xlimits,ylimits);

Write the cropped image to a GeoTIFF file. Use the GeoKeyDirectoryTag from the original GeoTIFF
file.

info5 = geotiffinfo('boston.tif');
filename5 = datafile('boston_subimage.tif');
geotiffwrite(filename5,A5crop,R5crop, ...
   'GeoKeyDirectoryTag',info5.GeoTIFFTags.GeoKeyDirectoryTag)

Display the GeoTIFF file containing the cropped image.

figure
mapshow(filename5)
title('Fenway Park - Cropped Image from GeoTIFF File')
xlabel('MA Mainland State Plane easting, survey feet')
ylabel('MA Mainland State Plane northing, survey feet')

Example 6: Write Elevation Data to GeoTIFF File

Write elevation data for an area around South Boulder Peak in Colorado to a GeoTIFF file.

elevFilename = 'n39_w106_3arc_v2.dt1';

Read the DEM from the file. To plot the data using geoshow, the data must be of type single or
double. Specify the data type for the raster using the 'OutputType' name-value pair.
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[Z6,R6] = readgeoraster(elevFilename,'OutputType','double');

Create a structure to hold the GeoKeyDirectoryTag information.

key = struct( ...
    'GTModelTypeGeoKey',[], ...
    'GTRasterTypeGeoKey',[], ...
    'GeographicTypeGeoKey',[]);

Indicate the data is in a geographic coordinate system by specifying the GTModelTypeGeoKey field
as 2. Indicate that the reference object uses postings (rather than cells) by specifying the
GTRasterTypeGeoKey field as 2. Indicate the data is referenced to a geographic coordinate
reference system by specifying the GeographicTypeGeoKey field as 4326.

key.GTModelTypeGeoKey = 2;
key.GTRasterTypeGeoKey = 2;
key.GeographicTypeGeoKey = 4326;

Write the elevation data to a GeoTIFF file.

filename6 = datafile('southboulder.tif');
geotiffwrite(filename6,Z6,R6,'GeoKeyDirectoryTag',key)

Verify the data has been written to a file by displaying it. First, import vector data that represents the
state boundary of Colorado using readgeotable. Then, display the boundary and GeoTIFF file.

GT = readgeotable('usastatelo.shp');
row = GT.Name == 'Colorado';
colorado = GT(row,:);

figure
usamap 'Colorado'
hold on
geoshow(colorado,'FaceColor','none')
g = geoshow(filename6,'DisplayType','mesh');
demcmap(g.ZData)
title('South Boulder Peak Elevation')
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Example 7: Write Non-Image Data to a TIFF File

If you are working with a data grid that is class double with values that range outside the limits
required of a floating point intensity image (0 <= data <= 1), and if you store the data in a TIFF file
using imwrite, then your data will be truncated to the interval [0,1], scaled, and converted to uint8.
Obviously it is possible for some or even all of the information in the original data to be lost. To avoid
these problems, and preserve the numeric class and range of your data grid, use geotiffwrite to
write the data.

Create sample Z data.

n = 512;
Z7 = peaks(n);

Create a referencing object to reference the rows and columns to X and Y.

R7 = maprasterref('RasterSize',[n n],'ColumnsStartFrom','north');
R7.XWorldLimits = R7.XIntrinsicLimits;
R7.YWorldLimits = R7.YIntrinsicLimits;

Create a structure to hold the GeoKeyDirectoryTag information. Set the model type to 1 indicating
Projected Coordinate System (PCS).

key.GTModelTypeGeoKey = 1;

Set the raster type to 1 indicating PixelIsArea (cells).

key.GTRasterTypeGeoKey = 1;
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Indicate a user-defined Projected Coordinate System by using a value of 32767.

key.ProjectedCSTypeGeoKey = 32767;

Write the data to a GeoTIFF file with geotiffwrite. For comparison, write a second file using
imwrite.

filename_geotiff = datafile('zdata_geotiff.tif');
filename_tiff = datafile('zdata_tiff.tif');
geotiffwrite(filename_geotiff,Z7,R7,'GeoKeyDirectoryTag',key)
imwrite(Z7, filename_tiff);

When you read the file using imread the data values and class type are preserved. You can see that
the data values in the TIFF file are not preserved.

geoZ  = imread(filename_geotiff);
tiffZ = imread(filename_tiff);
fprintf('Class type of Z: %s\n', class(Z7))
fprintf('Class type of data in GeoTIFF file: %s\n', class(geoZ))
fprintf('Class type of data in    TIFF file: %s\n', class(tiffZ))
fprintf('Does data in GeoTIFF file equal Z: %d\n', isequal(geoZ, Z7))
fprintf('Does data in    TIFF file equal Z: %d\n', isequal(tiffZ, Z7))

Class type of Z: double
Class type of data in GeoTIFF file: double
Class type of data in    TIFF file: uint8
Does data in GeoTIFF file equal Z: 1
Does data in    TIFF file equal Z: 0

You can view the data grid using mapshow.

figure
mapshow(filename_geotiff,'DisplayType','texturemap')
title('Peaks - Stored in GeoTIFF File')
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Example 8: Modify an Existing File While Preserving Meta Information

You may want to modify an existing file, but preserve most, if not all, of the meta information in the
TIFF tags. This example converts the RGB image from the boston.tif file into an indexed image
and writes the new data to an indexed GeoTIFF file. The TIFF meta-information, with the exception of
the values of the BitDepth, BitsPerSample, and PhotometricInterpretation tags, is preserved.

Read the image from the boston.tif GeoTIFF file.

[A8,R8] = readgeoraster('boston.tif');

Use the MATLAB function, rgb2ind, to convert the RGB image to an indexed image X using
minimum variance quantization.

[X8,cmap] = rgb2ind(A8,65536);

Obtain the TIFF tag information using imfinfo.

info8 = imfinfo('boston.tif');

Create a TIFF tags structure to preserve selected information from the info structure.

tags = struct( ...
    'Compression',  info8.Compression, ...
    'RowsPerStrip', info8.RowsPerStrip, ...
    'XResolution',  info8.XResolution, ...
    'YResolution',  info8.YResolution, ...
    'ImageDescription', info8.ImageDescription, ...
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    'DateTime',    info8.DateTime, ...
    'Copyright',   info8.Copyright, ...
    'Orientation', info8.Orientation);

The values for the PlanarConfiguration and ResolutionUnit tags must be numeric rather than string
valued, as returned by imfinfo. You can set these tags by using the constant properties from the Tiff
class. For example, here are the possible values for the PlanarConfiguration constant property:

Tiff.PlanarConfiguration

ans = 

  struct with fields:

      Chunky: 1
    Separate: 2

Use the string value from the info structure to obtain the desired value.

tags.PlanarConfiguration = ...
    Tiff.PlanarConfiguration.(info8.PlanarConfiguration);

Set the ResolutionUnit value in the same manner.

tags.ResolutionUnit = Tiff.ResolutionUnit.(info8.ResolutionUnit);

The Software tag is not set in the boston.tif file. However, geotiffwrite will set the Software
tag by default. To preserve the information, set the value to the empty string which prevents the tag
from being written to the file.

tags.Software = '';

Copy the GeoTIFF information from boston.tif.

geoinfo = geotiffinfo('boston.tif');
key = geoinfo.GeoTIFFTags.GeoKeyDirectoryTag;

Write to the GeoTIFF file.

filename8 = datafile('boston_indexed.tif');
geotiffwrite(filename8,X8,cmap,R8,'GeoKeyDirectoryTag',key,'TiffTags',tags)

View the indexed image.

figure
mapshow(filename8)
title('Boston - Indexed Image')
xlabel('MA Mainland State Plane easting, survey feet')
ylabel('MA Mainland State Plane northing, survey feet')
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Compare the information in the structures that should be equal by printing a table of the values.

info_rgb = imfinfo('boston.tif');
info_indexed = imfinfo(filename8);
tagNames = fieldnames(tags);
tagNames(strcmpi('Software', tagNames)) = [];
names = [{'Height' 'Width'}, tagNames'];

spacing = 2;
fieldnameLength = max(cellfun(@length, names)) + spacing;
formatSpec = ['%-' int2str(fieldnameLength) 's'];

fprintf([formatSpec formatSpec formatSpec '\n'], ...
    'Fieldname', 'RGB Information', 'Indexed Information')
fprintf([formatSpec formatSpec formatSpec '\n'], ...
    '---------', '---------------', '-------------------')

for k = 1:length(names)
    fprintf([formatSpec formatSpec formatSpec '\n'], ...
        names{k}, ...
        num2str(info_rgb.(names{k})), ...
        num2str(info_indexed.(names{k})))
end

Fieldname            RGB Information      Indexed Information  
---------            ---------------      -------------------  
Height               2881                 2881                 
Width                4481                 4481                 
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Compression          Uncompressed         Uncompressed         
RowsPerStrip         256                  256                  
XResolution          300                  300                  
YResolution          300                  300                  
ImageDescription     "GeoEye"             "GeoEye"             
DateTime             2007:02:23 21:46:13  2007:02:23 21:46:13  
Copyright            "(c) GeoEye"         "(c) GeoEye"         
Orientation          1                    1                    
PlanarConfiguration  Chunky               Chunky               
ResolutionUnit       Inch                 Inch                 

Compare the information that should be different, since you converted an RGB image to an indexed
image, by printing a table of values.

names = {'FileSize', 'ColorType', 'BitDepth', ...
    'BitsPerSample', 'PhotometricInterpretation'};

fieldnameLength = max(cellfun(@length, names)) + spacing;
formatSpec = ['%-' int2str(fieldnameLength) 's'];
formatSpec2 = '%-17s';

fprintf(['\n' formatSpec formatSpec2 formatSpec2 '\n'], ...
    'Fieldname', 'RGB Information', 'Indexed Information')
fprintf([formatSpec formatSpec2 formatSpec2 '\n'], ...
    '---------', '---------------', '-------------------')
for k = 1:length(names)
    fprintf([formatSpec formatSpec2 formatSpec2 '\n'], ...
        names{k}, ...
        num2str(info_rgb.(names{k})), ...
        num2str(info_indexed.(names{k})))
end

Fieldname                  RGB Information  Indexed Information
---------                  ---------------  -------------------
FileSize                   38729900         27925078         
ColorType                  truecolor        indexed          
BitDepth                   24               16               
BitsPerSample              8  8  8          16               
PhotometricInterpretation  RGB              RGB Palette      

Cleanup: Remove Data Folder

Remove the temporary folder and data files.

rmdir(datadir, 's')

Data Set Information

The files boston.tif and boston_ovr.jpg include materials copyrighted by GeoEye, all rights
reserved. GeoEye was merged into the DigitalGlobe corporation on January 29th, 2013. For more
information about the data sets, use the commands type boston.txt and type boston_ovr.txt.

The files concord_orthow_w.tif and concord_ortho_e.tif are derived using orthophoto tiles
from the Bureau of Geographic Information (MassGIS), Commonwealth of Massachusetts, Executive
Office of Technology and Security Services. For more information about the data sets, use the
command type concord_ortho.txt. For an updated link to the data provided by MassGIS, see
https://www.mass.gov/info-details/massgis-data-layers.
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The DTED file n39_w106_3arc_v2.dt1 is courtesy of the US Geological Survey.

See Also
geotiffwrite | worldfileread | getworldfilename | geotiffinfo
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Create, Process, and Export Digital Surface Model from Lidar
Data

This example shows how to process aerial lidar data received from an airborne lidar system into a
GeoTIFF file. Import a LAZ file containing aerial lidar data, create a spatially referenced digital
surface model (DSM) from the data, crop the DSM to an area of interest, and export the cropped
DSM to a GeoTIFF file.

When you export a DSM to a GeoTIFF file, you also export the projected coordinate reference system
(CRS) for the data. Projected CRSs associate x- and y-coordinates to locations on Earth. Specifying
the projected CRS is important when creating a model because the same coordinates in different
projected CRSs can refer to different locations.

Read Aerial Lidar Data

Read 3-D point cloud data for an area near Tuscaloosa, Alabama from a LAZ file [1 on page 2-125].
The area includes roads, trees, and buildings.

lazFileName = fullfile(toolboxdir("lidar"),"lidardata","las","aerialLidarData.laz");
lasReader = lasFileReader(lazFileName);
ptCloud = readPointCloud(lasReader);

Display the data.

figure
pcshow(ptCloud.Location)
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Create DSM

A DSM includes the elevations of ground points, the elevations of natural features such as trees, and
the elevations of artificial features such as buildings. Create a DSM from the point cloud data by
using the pc2dem function. Use the maximum point from each element of the point cloud, which
corresponds to the first return pulse of the lidar data, by specifying the CornerFillMethod as
"max". The function returns an array of elevation values and the x- and y-limits of the data.

gridRes = 1;
[Z,xlimits,ylimits] = pc2dem(ptCloud,gridRes,CornerFillMethod="max");

Spatially Reference DSM

Spatially reference the DSM by creating a map reference object.

R = maprefpostings(xlimits,ylimits,size(Z))

R = 
  MapPostingsReference with properties:

             XWorldLimits: [429745.02 430146.02]
             YWorldLimits: [3679830.75 3680114.75]
               RasterSize: [285 402]
     RasterInterpretation: 'postings'
         ColumnsStartFrom: 'south'
            RowsStartFrom: 'west'
    SampleSpacingInWorldX: 1
    SampleSpacingInWorldY: 1
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     RasterExtentInWorldX: 401
     RasterExtentInWorldY: 284
         XIntrinsicLimits: [1 402]
         YIntrinsicLimits: [1 285]
       TransformationType: 'rectilinear'
     CoordinateSystemType: 'planar'
             ProjectedCRS: []

The reference object contains information such as the limits, the distance between the points, and the
directions of the columns and rows. By default, the reference object assumes that columns start from
the south and rows start from the west. These default values are consistent with the output of the
pc2dem function, which creates the elevation array such that the first element represents the
southwesternmost point.

The ProjectedCRS property of the reference object is empty, which means the DSM is not
associated with a projected CRS. Read the CRS from the LAZ file and update the ProjectedCRS
property.

p = readCRS(lasReader);
R.ProjectedCRS = p;
disp(p)

  projcrs with properties:

                    Name: "NAD83 / UTM zone 16N"
           GeographicCRS: [1×1 geocrs]
        ProjectionMethod: "Transverse Mercator"
              LengthUnit: "meter"
    ProjectionParameters: [1×1 map.crs.ProjectionParameters]

A projected CRS consists of a geographic CRS and several parameters that are used to transform
coordinates to and from the geographic CRS. A geographic CRS consists of a datum (including a
reference ellipsoid), a prime meridian, and an angular unit of measurement. View the geographic
CRS and its reference ellipsoid.

g = p.GeographicCRS

g = 
  geocrs with properties:

             Name: "NAD83"
            Datum: "North American Datum 1983"
         Spheroid: [1×1 referenceEllipsoid]
    PrimeMeridian: 0
        AngleUnit: "degree"

g.Spheroid

ans = 
referenceEllipsoid with defining properties:

                 Code: 7019
                 Name: 'GRS 1980'
           LengthUnit: 'meter'
        SemimajorAxis: 6378137
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        SemiminorAxis: 6356752.31414036
    InverseFlattening: 298.257222101
         Eccentricity: 0.0818191910428158

  and additional properties:

    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

Display the spatially referenced DSM as an overhead surface by using the mapshow function.

figure
mapshow(Z,R,DisplayType="surface")
axis image
title("Digital Surface Model (DSM) from Aerial Lidar Data")

Crop DSM to Region of Interest

Represent the DSM region as a polygon by using a mappolyshape object. Update the
ProjectedCRS property to match the CRS of the DSM.

bboxx = xlimits([1 1 2 2 1]);
bboxy = ylimits([1 2 2 1 1]);
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bboxshape = mappolyshape(bboxx,bboxy);
bboxshape.ProjectedCRS = p;

View the region using satellite imagery. You can visually confirm that the satellite imagery aligns with
the DSM visualization created using the mapshow function.

regioncolors = lines(2);
geoplot(bboxshape, ...
    EdgeColor=regioncolors(1,:), ...
    FaceAlpha=0.2, ...
    LineWidth=2, ...
    DisplayName="Aerial Lidar Data Region")
hold on
geobasemap satellite
legend

Select and display a region of interest. To use a predefined region that is bounded by roads on the
east, north, and west, specify interactivelySelectPoints as false. Alternatively, you can
interactively select four points that define a region by specifying interactivelySelectPoints as
true.

interactivelySelectPoints = false;
if interactivelySelectPoints
    [cropbboxlat,cropbboxlon] = ginput(4); %#ok<UNRCH> 
else
    cropbboxlat = [33.2571550; 33.2551982; 33.2551982; 33.2571125];
    cropbboxlon = [-87.7530648; -87.7530139; -87.7509086; -87.7509086];
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end
cropbboxlat(end+1) = cropbboxlat(1);
cropbboxlon(end+1) = cropbboxlon(1);
cropbboxshape = geopolyshape(cropbboxlat,cropbboxlon);

geoplot(cropbboxshape, ...
    EdgeColor=regioncolors(2,:), ...
    FaceAlpha=0.2, ...
    LineWidth=2, ...
    DisplayName="Selected Region of Interest")

Transform the latitude and longitude limit coordinates for the region to x- and y-limit coordinates.
The geographic CRS underlying the satellite basemap is WGS84, while the geographic CRS
underlying the DSM data is NAD83. NAD83 and WGS84 are similar, but not identical. As a result,
there can be discrepancies in coordinates between the satellite imagery and DSM.

[cropbboxx,cropbboxy] = projfwd(p,cropbboxlat(:),cropbboxlon(:));

Create the crop limits by finding the bounds of the x- and y-coordinates.

[cropxlimmin,cropxlimmax] = bounds(cropbboxx);
cropxlimits = [cropxlimmin cropxlimmax];
[cropylimmin,cropylimmax] = bounds(cropbboxy);
cropylimits = [cropylimmin cropylimmax];

Create a new spatially referenced DSM that contains data within the region of interest.

[Zcrop,Rcrop] = mapcrop(Z,R,cropxlimits,cropylimits);
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Export DSM to GeoTIFF File

Write the cropped DSM to a GeoTIFF file called lidardsm.tif. Specify the projected CRS by using
the CoordRefSysCode argument. The metadata for the LAZ file [1 on page 2-125] indicates the
projected CRS is UTM Zone 16N, specified by EPSG authority code 26916.

datafile = "lidardsm.tif";
epsgCode = 26916;
geotiffwrite(datafile,Zcrop,Rcrop,CoordRefSysCode=epsgCode)

You can also find the authority code by displaying the well-known text (WKT) string for the projected
CRS. For this WKT, the authority code is in the last line.

wktstring(p,"Format","formatted")

ans = 
    "PROJCRS["NAD83 / UTM zone 16N",
         BASEGEOGCRS["NAD83",
             DATUM["North American Datum 1983",
                 ELLIPSOID["GRS 1980",6378137,298.257222101,
                     LENGTHUNIT["metre",1]]],
             PRIMEM["Greenwich",0,
                 ANGLEUNIT["degree",0.0174532925199433]],
             ID["EPSG",4269]],
         CONVERSION["UTM zone 16N",
             METHOD["Transverse Mercator",
                 ID["EPSG",9807]],
             PARAMETER["Latitude of natural origin",0,
                 ANGLEUNIT["degree",0.0174532925199433],
                 ID["EPSG",8801]],
             PARAMETER["Longitude of natural origin",-87,
                 ANGLEUNIT["degree",0.0174532925199433],
                 ID["EPSG",8802]],
             PARAMETER["Scale factor at natural origin",0.9996,
                 SCALEUNIT["unity",1],
                 ID["EPSG",8805]],
             PARAMETER["False easting",500000,
                 LENGTHUNIT["metre",1],
                 ID["EPSG",8806]],
             PARAMETER["False northing",0,
                 LENGTHUNIT["metre",1],
                 ID["EPSG",8807]]],
         CS[Cartesian,2],
             AXIS["easting",east,
                 ORDER[1],
                 LENGTHUNIT["metre",1]],
             AXIS["northing",north,
                 ORDER[2],
                 LENGTHUNIT["metre",1]],
         ID["EPSG",26916]]"

One way to validate the GeoTIFF file is to return information about the file as a RasterInfo object.
For example, verify that the projected CRS is in the file by querying the
CoordinateReferenceSystem property of the RasterInfo object.

info = georasterinfo(datafile);
info.CoordinateReferenceSystem
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ans = 
  projcrs with properties:

                    Name: "NAD83 / UTM zone 16N"
           GeographicCRS: [1×1 geocrs]
        ProjectionMethod: "Transverse Mercator"
              LengthUnit: "meter"
    ProjectionParameters: [1×1 map.crs.ProjectionParameters]

Another way to validate the GeoTIFF file is by displaying it. Read the new DSM as an array and a
reference object by using the readgeoraster function. Then, display the DSM.

[Z2,R2] = readgeoraster(datafile);

figure
mapshow(Z2,R2,DisplayType="surface")
axis image
title("Cropped DSM from Aerial Lidar Data")

You can use the GeoTIFF file in other applications that import GIS data. For example, RoadRunner
enables you to add elevation data from GeoTIFF files to scenes.

References
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See Also
Functions
geotiffwrite | mapshow | pc2dem | segmentGroundSMRF

Objects
MapPostingsReference | projcrs | lasFileReader
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Build Pikes Peak RoadRunner 3D Scene Using RoadRunner HD
Map

This example shows how to build a RoadRunner 3D scene for Pikes Peak, Colorado, using MATLAB®
functions. You can build a scene for the full road, or a section of Pikes Peak Road using a Keyhole
Markup Language (KML) file containing its latitude-longitude coordinates and a Geostationary Earth
Orbit Tagged Image File Format (GeoTIFF) file containing its elevation. Use Mapping Toolbox™ to
import the data files for the road.

Import KML File for Pikes Peak

You can choose to build the RoadRunner HD Map for either a section of the road or the full road.
Note that building a section of the road requires significantly less time than building the entire scene.
In this example, you import the coordinates for the road centers into MATLAB from a KML file (Map
data ©2022 Google), and then plot the data imported from the KML file to view the coordinates.

To build only a section of the road, specify buildFullRoad as false. To build the full road, specify
it as true.

buildFullRoad = false; 

Read the data from the KML file.

if buildFullRoad
    kmlData = readgeotable("PikesPeakFullRoadData.kml");  
else
    kmlData = readgeotable("PikesPeakRoadSectionData.kml");
end

Plot the coordinates of Pikes Peak road.

geoplot(kmlData)
geobasemap topographic
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Import GeoTIFF File for Pikes Peak Elevation

To include elevation for Pikes Peak Road, download terrain data for the area from the United States
Geological Survey National Map Services, and query the elevations for the coordinates corresponding
to the road. The data has been processed by cropping the USGS data to the Pikes Peak area.

United States Geological Survey National Map Services TNM Download

Convert the geospatial table to a table of road centers to obtain the latitude and longitude
coordinates for the road.

T = geotable2table(kmlData,["Latitude","Longitude"]);
[lat,lon] = polyjoin(T.Latitude,T.Longitude);

Query the elevations of the road coordinates from the terrain data.

filename = "PikesPeak.tif";
outputType = "OutputType";
type = "double";
[georefGrid,spatialRef] = readgeoraster(filename,outputType,type);
ctrElev = geointerp(georefGrid,spatialRef,lat,lon);

Create RoadRunner HD Map

Create the RoadRunner HD Map and set the geographic reference origin.

Create an empty RoadRunner HD Map.
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rrMap = roadrunnerHDMap;

Compute the georeference origin as the center of the bounding quadrangle.

[latlim,lonlim] = geoquadline(lat,lon);
lat0 = mean(latlim);
lon0 = mean(lonlim);

Set the geographic reference for the region of interest.

rrMap.GeoReference = [lat0 lon0];

Upsample Road Data

Because the data points obtained from the KML file are sparse, and the road contains sharp curves,
you must upsample the data to avoid modeling inaccurate road lanes. You can upsample the data by
using helperRoadDimensions helper function. First, you must transform the imported latitude and
longitude coordinates to xy-map coordinates using a projected CRS. Then, using the xy-map
coordinates for the centers of the road, you must set the road width. In this example, Pikes Peak Road
is a two-lane road, so you can assume a total road width of 7.4 meters based on the average lane
width of 3.7 meters.

Read the Transverse Mercator projected CRS from the RoadRunner HD Map.

p = readCRS(rrMap);

Project the latitude and longitude coordinates to xy-coordinates.

[x,y] = projfwd(p,lat,lon);

Define the road centers and the road width.

rdCtrs = [x y ctrElev];
rdWidth = 7.4;

Upsample the data for the lane boundaries to obtain a better result for the road curves.

[lftBndry,rgtBndry,ctrBndry] = helperRoadDimensions(rdCtrs,rdWidth);

Create Road Network

Create the RoadRunner HD Map road network using the interpolated data, and modify the road to
resemble Pikes Peak Road, which consists of two lanes and three lane boundaries. Then, apply a solid
white marking to the outer lane boundaries and a double yellow marking between the two lanes for
the entire length of the road.

To improve performance as the number of objects in the map increases, initialize the Lanes and
LaneBoundaries properties of the HD Map.

rrMap.Lanes(2,1) = roadrunner.hdmap.Lane;
rrMap.LaneBoundaries(3,1) = roadrunner.hdmap.LaneBoundary;

Assign Lane property values. Use deal to match the input lists to the output lists.

[rrMap.Lanes.ID] = deal("Lane1","Lane2");
[rrMap.Lanes.TravelDirection] = deal("Backward","Forward");
[rrMap.Lanes.LaneType] = deal("Driving");
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Average the coordinates of the left and right lane boundaries with the corresponding coordinates of
the center lane boundary to obtain the lane centers.

lftLane = (lftBndry+ctrBndry)/2;
rgtLane = (rgtBndry+ctrBndry)/2;
[rrMap.Lanes.Geometry] = deal(lftLane,rgtLane);

Assign IDs and the corresponding coordinates to the three lane boundaries.

[rrMap.LaneBoundaries.ID] = deal("Left","Center","Right");
[rrMap.LaneBoundaries.Geometry] = deal(lftBndry,ctrBndry,rgtBndry);

Associate the lane boundaries to their lanes using their IDs. Note that both lanes share the center
lane boundary.

leftBoundary(rrMap.Lanes(1),"Left",Alignment="Forward");
rightBoundary(rrMap.Lanes(1),"Center",Alignment="Forward");
leftBoundary(rrMap.Lanes(2),"Center",Alignment="Forward");
rightBoundary(rrMap.Lanes(2),"Right",Alignment="Forward");

Define the file path to the solid white lane marking asset.

solidWhiteAsset = roadrunner.hdmap.RelativeAssetPath(AssetPath="Assets/Markings/SolidSingleWhite.rrlms");

Define the path to the solid double yellow lane marking asset. Add both lane markings to the HD
Map.

doubleYellowAsset = roadrunner.hdmap.RelativeAssetPath(AssetPath="Assets/Markings/SolidDoubleYellow.rrlms");
rrMap.LaneMarkings(2,1) = roadrunner.hdmap.LaneMarking;
[rrMap.LaneMarkings.ID] = deal("SolidWhite","DoubleYellow");
[rrMap.LaneMarkings.AssetPath] = deal(solidWhiteAsset,doubleYellowAsset);

Specify that the markings span the entire length of their lane boundary. Create a reference and
attribution for the solid double yellow marking.

markingSpan = [0 1];
markingRefSY = roadrunner.hdmap.MarkingReference(MarkingID=roadrunner.hdmap.Reference(ID="DoubleYellow"));
markingAttribSY = roadrunner.hdmap.ParametricAttribution(MarkingReference=markingRefSY,Span=markingSpan);

Create a reference and attribution for the solid white marking. Then, apply the solid white marking to
the left and right lane boundaries and the solid double yellow marking to the center lane boundary.

markingRefSW = roadrunner.hdmap.MarkingReference(MarkingID=roadrunner.hdmap.Reference(ID="SolidWhite"));
markingAttribSW = roadrunner.hdmap.ParametricAttribution(MarkingReference=markingRefSW,Span=markingSpan);
[rrMap.LaneBoundaries.ParametricAttributes] = deal(markingAttribSW,markingAttribSY,markingAttribSW);

Set Geographic Boundaries

Setting the geographic boundaries for the RoadRunner HD Map centers the scene on the imported
road and enables you to insert the road into the scene without using the World Settings Tool in
RoadRunner.

Set the geographic bounds for the map as the minimum and maximum coordinate values of the center
boundary.

geoBounds = [min(ctrBndry); max(ctrBndry)];
rrMap.GeographicBoundary = geoBounds;

Plot the lane centers and lane boundaries.
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plot(rrMap)
title('RoadRunner HD Map of Pikes Peak Road')
xlabel('x (m)')
ylabel('y (m)')

Export RoadRunner HD Map and Import to RoadRunner

Save the RoadRunner HD Map to a file. Import it into RoadRunner by adding the file to a folder in the
Library Browser and dragging it into the scene. For more information on importing an HD Map file
into RoadRunner, see “Import HD Map File into RoadRunner” (RoadRunner). Build the scene using
the Scene Builder Tool.

Specify an output filename based on the data used to construct the RoadRunner HD Map.

if buildFullRoad
    fileName = "PikesPeakFullRoad.rrhd";
else
    fileName = "PikesPeakRoadSection.rrhd";
end

Write the map to the file.

write(rrMap,fileName)

This figure shows a 3D scene of Pikes Peak Road built using RoadRunner Scene Builder.
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To visualize the terrain, you can import the PikesPeak.tif file into RoadRunner using the Elevation
Map Tool (RoadRunner).

See Also
Functions
readgeotable | geoplot
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Objects
projcrs | roadrunner | roadrunnerHDMap
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Converting Coastline Data (GSHHG) to Shapefile Format

This example shows how to:

• Extract a subset of coastline data from the Global Self-consistent Hierarchical High-resolution
Geography (GSHHG) data set

• Manipulate polygon features to add lakes and other interior water bodies as inner polygon rings
("holes")

• Save the modified data set to a shapefile for future use in MATLAB®, or for export to a geographic
information system

The Global Self-consistent Hierarchical High-resolution Geography (GSHHG; formerly Global Self-
consistent Hierarchical High-resolution Shorelines, or GSHHS) data set, by Paul Wessel and Walter H.
F. Smith, provides a consistent set of hierarchically arranged closed polygons. They can be used to
construct base maps, or in applications or analyses that involve operations like geographic searches
or the statistical properties of coastlines.

Step 1: Define a Working Folder

This example creates several temporary files and uses the variable workingFolder to denote their
location. The value used here is determined by the output of the tempdir command, but you could
easily customize this.

workingFolder = tempdir;

Step 2: GNU® Unzip and Index the Coarse-Resolution GSHHG Layer

GSHHG is available in wide range of spatial resolutions. This example uses the lowest-resolution
data, from the binary file gshhs_c.b. A GNU zipped copy of this file is included in the Mapping
Toolbox™ data folder, on the MATLAB path.

Use the MATLAB gunzip function to decompress gshhs_c.b.gz and create the file gshhs_c.b in
the location indicated by workingFolder. Then create an index file, gshhs_c.i, in the same folder.
In general, having an index file helps to accelerate later calls to the gshhs function. Note that when
you use the 'createindex' option, gshhs does not extract data.

files = gunzip('gshhs_c.b.gz', workingFolder);
filename = files{1};
indexfile = gshhs(filename, 'createindex');

Step 3: Import the GSHHG Data for South America

Select data for a specific latitude-longitude quadrangle and import it as a Mapping Toolbox
"geostruct" array:

latlim = [-60  15];
lonlim = [-90 -30];
S = gshhs(filename, latlim, lonlim);

If you have finished extracting data, you can remove the decompressed GSHHS file and the index file.

delete(filename)
delete(indexfile)
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Step 4: Examine the Data Set

Examine the first element of the geostruct array S. In addition to the Lat and Lon coordinate arrays,
note the various attribute fields that are present.

S(1)

ans = struct with fields:
            Geometry: 'Polygon'
         BoundingBox: [2x2 double]
                 Lat: [-53.0004 -53 -52.5017 -52.7963 -52.0434 -52.0838 -52.3638 -51.9692 -52.4763 -51.7925 -51.5217 -51.1569 -51.4650 -51.7722 -51.5550 -52.0364 -51.6342 -52.0427 -51.6283 -51.1117 -50.9233 -50.6942 -50.3871 -50.8513 -50.3750 ... ]
                 Lon: [-73.3617 -73.3626 -72.8909 -73.7034 -73.7392 -72.9983 -72.9884 -72.7708 -72.9184 -72.4792 -73.1442 -72.9335 -73.4259 -72.6031 -73.3626 -73.1710 -73.4026 -73.3898 -73.9309 -73.6609 -74.2375 -73.3392 -73.5700 -74.0367 -73.9624 ... ]
               South: -53.9004
               North: 71.9942
                West: 191.8947
                East: 325.2054
                Area: 3.7652e+07
               Level: 1
         LevelString: 'land'
           NumPoints: 971
       FormatVersion: 3
              Source: 'WVS'
    CrossesGreenwich: 0
            GSHHS_ID: 1

GSHHS comprises four levels of shorelines:

• Level 1 - "Land"
• Level 2 - "Lake"
• Level 3 - "Island in lake"
• Level 4 - "Pond in island in lake"

Check to see which levels the data you've imported includes. The Level field contains numerical
level numbers.

levels = [S.Level];
unique(levels)

ans = 1×3

     1     2     3

The LevelString field provides their interpretation. For example,

S(104).LevelString

ans = 
'lake'

shows that feature 104 is a lake (a Level 2 feature).

In this example, due either to the low resolution or to spatial subsetting, no Level 4 features are
present.
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Step 5: Extract the Top Two Levels into Separate Geostruct Arrays

This example manipulates the top two levels of the GSHHS hierarchy, inserting each "lake" into the
surrounding land mass.

Extract GSHHS Level 1 (exterior coastlines of continents and oceanic islands):

L1 = S(levels == 1);

Extract Level 2 (coastlines of lakes and seas within Level 1 polygons):

L2 = S(levels == 2);

To see their spatial relationships, you can map Level 1 edges as blue lines and Level 2 edges as red
lines:

figure
axesm('mercator', 'MapLatLimit', latlim, 'MapLonLimit', lonlim)
gridm; mlabel; plabel
geoshow([L1.Lat], [L1.Lon], 'Color', 'blue')
geoshow([L2.Lat], [L2.Lon], 'Color', 'red')
tightmap

Step 6: Merge Level 2 Polygons into Level 1

Define an anonymous predicate function to detect bounding-box intersections (returning true if a pair
of bounding boxes intersect and false otherwise). Inputs A and B are 2-by-2 bounding-box matrices of
the form
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  [min(lon)  min(lat)
   max(lon)  max(lat)].

boxesIntersect = ...
    @(A,B) (~(any(A(2,:) < B(1,:)) || any(B(2,:) < A(1,:))));

For convenience in looping over them, copy the Level 1 bounding boxes to a 3-D array:

L1boxes = reshape([L1.BoundingBox],[2 2 numel(L1)]);

Check each Level 1 - Level 2 pair of features for possible intersection. See if polybool returns any
output or not, but avoid calling polybool unless a bounding box intersection is detected first:

for k = 1:numel(L2)
    for j = 1:numel(L1)
        % See if bounding boxes intersect
        if boxesIntersect(L2(k).BoundingBox, L1boxes(:,:,j))
            % See if actual features intersect
            if ~isempty(polybool('intersection', ...
                L2(k).Lon, L2(k).Lat, L1(j).Lon, L1(j).Lat))
                % Reverse level 2 vertex order before merge to
                % correctly orient inner rings
                L1(j).Lon = [L1(j).Lon fliplr(L2(k).Lon) NaN];
                L1(j).Lat = [L1(j).Lat fliplr(L2(k).Lat) NaN];
            end
        end
    end
end

Step 7: Save Results in a Shapefile

With a single call to shapewrite, you can create a trio of files,

gshhs_c_SouthAmerica.shp
gshhs_c_SouthAmerica.shx
gshhs_c_SouthAmerica.dbf

in your working folder.

shapepath = fullfile(workingFolder,'gshhs_c_SouthAmerica.shp');
shapewrite(L1, shapepath)

Step 8: Validate the Shapefile

To validate the results of shapewrite, read the new shapefile into the geospatial table
southAmerica:

southAmerica = readgeotable(shapepath,'CoordinateSystemType','geographic')

southAmerica=79×13 table
       Shape         South      North      West      East        Area       Level    LevelString    NumPoints    FormatVersi    Source    CrossesGree    GSHHS_ID
    ____________    _______    _______    ______    ______    __________    _____    ___________    _________    ___________    ______    ___________    ________

    geopolyshape      -53.9     71.994    191.89    325.21    3.7652e+07      1        "land"          971            3         "WVS"          0             1   
    geopolyshape    -55.055    -52.469    287.98    294.89         46269      1        "land"           19            3         "WVS"          0            42   
    geopolyshape     -52.36    -51.235    300.26    302.29        4402.4      1        "land"           11            3         "WVS"          0            85   
    geopolyshape    -55.675    -54.933    289.99    292.02        2669.1      1        "land"           10            3         "WVS"          0            97   
    geopolyshape    -50.065     -48.67    284.53    285.62        4021.9      1        "land"            9            3         "WVS"          0           115   
    geopolyshape     -52.26    -51.336    298.92    300.81        4326.2      1        "land"            9            3         "WVS"          0           121   
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    geopolyshape    -54.135     -53.38    286.33    287.85        3809.7      1        "land"            8            3         "WVS"          0           143   
    geopolyshape    -43.448    -41.768    285.55    286.65         10188      1        "land"            8            3         "WVS"          0           144   
    geopolyshape    -53.478     -52.73       287    288.46        3006.8      1        "land"            7            3         "WVS"          0           151   
    geopolyshape     10.041     10.841    298.07    299.09          5174      1        "land"            7            3         "WVS"          0           174   
    geopolyshape    -54.276    -53.566     289.1     289.8        1420.3      1        "land"            5            3         "WVS"          0           292   
    geopolyshape    -44.937    -44.364    286.54    287.31         955.5      1        "land"            5            3         "WVS"          0           329   
    geopolyshape    -54.401    -53.936    288.29    289.04         704.5      1        "land"            5            3         "WVS"          0           330   
    geopolyshape    -51.125     -50.71    285.04    285.64           462      1        "land"            5            3         "WVS"          0           339   
    geopolyshape    -50.458    -50.001    284.54    285.24         612.9      1        "land"            5            3         "WVS"          0           341   
    geopolyshape    -48.711    -48.137    284.98    285.53        1039.8      1        "land"            5            3         "WVS"          0           343   
      ⋮

Note that the two longest fieldnames, 'FormatVersion' and 'CrossesGreenwich', have been
truncated to 11 characters. This happened during the call to shapewrite and is unavoidable
because of a rigid 11-character limit in the xBASE tables (.DBF format) used to store attributes in
shapefiles. (In general, when writing shapefiles you may want to re-define fieldnames longer than 11
characters in order to avoid or control the effects of automatic truncation.)

Optionally, remove the new shapefiles from your working folder. (This example needs to clean up after
itself; in a real application you would probably want to omit this step.)

delete([shapepath '.*'])

Display the data from the new shapefile. Note the various "holes" in the South America polygon
indicating lakes and shorelines of other extended bodies of water in the interior of the continent.

figure
ax = axesm('mercator', 'MapLatLimit', latlim, 'MapLonLimit', lonlim);
ax.Color = 'cyan';
gridm; mlabel; plabel
geoshow(southAmerica, 'FaceColor', [0.15 0.8 0.15])
tightmap
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Reference

Wessel, P., and W. H. F. Smith, 1996, A global self-consistent, hierarchical, high-resolution shoreline
database, Journal of Geophysical Research, Vol. 101, pp. 8741-8743.

Additional Data

The complete GSHHG data set may be downloaded from the U.S. National Oceanic and Atmospheric
Administration (NOAA) web site. For more information about finding data sets, see “Find Geospatial
Vector Data” on page 2-78.

Credits

The GSHHG data file is provided in the Mapping Toolbox courtesy of Dr. Paul Wessel of the University
of Hawaii and Dr. Walter H. F. Smith of NOAA.

For more information, run:

  >> type gshhs_c.txt

See Also
gshhs | shapewrite | readgeotable

 Converting Coastline Data (GSHHG) to Shapefile Format
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Shape of the Earth
Although the Earth is very round, it is an oblate spheroid rather than a perfect sphere. This difference
is so small (only one part in 300) that modeling the Earth as spherical is sufficient for making small-
scale (world or continental) maps. However, making accurate maps at larger scale demands that a
spheroidal model be used. Such models are essential, for example, when you are mapping high-
resolution satellite or aerial imagery, or when you are working with coordinates from the Global
Positioning System (GPS). This section addresses how Mapping Toolbox software accurately models
the shape, or figure, of the Earth.

Ellipsoid Shape
You can define ellipsoids in several ways. They are usually specified by a semimajor and a semiminor
axis, but are often expressed in terms of a semimajor axis and either inverse flattening (which for the
Earth, as mentioned above, is one part in 300) or eccentricity. Whichever parameters are used, as
long as an axis length is included, the ellipsoid is fully constrained and the other parameters are
derivable. The components of an ellipsoid are shown in the following diagram.

The toolbox includes ellipsoid models that represent the figures of the Sun, Moon, and planets, as
well as a set of the most common ellipsoid models of the Earth. For more information, see
“Comparison of Reference Spheroids” on page 3-4.

Geoid Shape
Literally, geoid means Earth-shaped. The geoid is an empirical approximation of the figure of the
Earth (minus topographic relief), its "lumpiness." Specifically, it is an equipotential surface with
respect to gravity, more or less corresponding to mean sea level. It is approximately an ellipsoid, but
not exactly so because local variations in gravity create minor hills and dales (which range from -100
m to +60 m across the Earth). This variation in height is on the order of 1 percent of the differences
between the semimajor and semiminor ellipsoid axes used to approximate the Earth's shape.

The shape of the geoid is important for some purposes, such as calculating satellite orbits, but need
not be taken into account for every mapping application. However, knowledge of the geoid is
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sometimes necessary, for example, when you compare elevations given as height above mean sea
level to elevations derived from GPS measurements. Geoid representations are also inherent in datum
definitions.

Map the Geoid

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Load
coastline latitude and longitude data.

[N,R] = egm96geoid;
load coastlines

Display the geoid heights as a surface using a Robinson projection. Ensure the coastline data appears
over the surface by setting the 'CData' name-value pair to the geoid heights data and the 'ZData'
name-value pair to a matrix of zeros. Then, display the coastline data.

axesm robinson
Z = zeros(R.RasterSize);
geoshow(N,R,'DisplayType','surface','CData',N,'ZData',Z)
geoshow(coastlat,coastlon,'color','k')

Display a colorbar below the map.

colorbar('southoutside')

 Shape of the Earth
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Comparison of Reference Spheroids
When the Earth (or another roughly spherical body such as the Moon) is modeled as a sphere having
a standard radius, it is called a reference sphere. Likewise, when the model is a flattened (oblate)
ellipsoid of revolution, with a standard semimajor axis and standard inverse flattening, semiminor
axis, or eccentricity, it is called a reference ellipsoid. Both models are spheroidal in shape, so each
can be considered to be a type of reference spheroid. Mapping Toolbox supports several
representations for reference spheroids: referenceSphere, referenceEllipsoid, and
oblateSpheroid objects, and an older representation, ellipsoid vector.

referenceSphere Objects
When using a strictly spherical model, you should generally use a referenceSphere object
(although both referenceEllipsoid and oblateSpheroid can represent a perfect sphere).

By default, referenceSphere returns a dimensionless unit sphere:

referenceSphere

ans = 

referenceSphere with defining properties:

          Name: 'Unit Sphere'
    LengthUnit: ''
        Radius: 1

  and additional properties:

    SemimajorAxis
    SemiminorAxis
    InverseFlattening
    Eccentricity
    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

You can request a specific body by name, and the radius will be in meters by default:

earth = referenceSphere('Earth')

earth = 

referenceSphere with defining properties:

          Name: 'Earth'
    LengthUnit: 'meter'
        Radius: 6371000

  and additional properties:

    SemimajorAxis
    SemiminorAxis
    InverseFlattening
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    Eccentricity
    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

You can reset the length unit if desired (and the radius is rescaled appropriately) :

earth.LengthUnit = 'kilometer'

earth = 

referenceSphere with defining properties:

          Name: 'Earth'
    LengthUnit: 'kilometer'
        Radius: 6371

  and additional properties:

    SemimajorAxis
    SemiminorAxis
    InverseFlattening
    Eccentricity
    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

or specify the length unit at the time of construction:

referenceSphere('Earth','km')

ans = 

referenceSphere with defining properties:

          Name: 'Earth'
    LengthUnit: 'kilometer'
        Radius: 6371

  and additional properties:

    SemimajorAxis
    SemiminorAxis
    InverseFlattening
    Eccentricity
    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

Any length unit supported by validateLengthUnit can be used. A variety of abbreviations are
supported for most length units, see validateLengthUnit for a complete list.
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One thing to note about referenceSphere is that only the defining properties are displayed, in
order to reduce clutter at the command line. (This approach saves a small amount of computation as
well.) In particular, don't overlook the dependent SurfaceArea and Volume properties, even though
they are not displayed. The surface area of the spherical earth model, for example, is easily obtained
through the SurfaceArea property:

earth.SurfaceArea

ans =
   5.1006e+08

This result is in square kilometers, because the LengthUnit property of the object earth has value
'kilometer'.

When programming with Mapping Toolbox it may help to be aware that referenceSphere actually
includes all the geometric properties of referenceEllipsoidand oblateSpheroid
(SemimajorAxis, SemiminorAxis, InverseFlattening, Eccentricity, Flattening,
ThirdFlattening, and MeanRadius, as well as SurfaceArea, and Volume). None of these
properties can be set on a referenceSphere, and some have values that are fixed for all spheres.
Eccentricity is always 0, for example. But they provide a flexible environment for programming
because any geometric computation that accepts a referenceEllipsoid will also run properly
given a referenceSphere. This is a type of polymorphism in which different classes support
common, or strongly overlapping interfaces.

referenceEllipsoid Objects
When using an oblate spheroid to represent the Earth (or another roughly spherical body), you should
generally use a referenceEllipsoid object. An important exception occurs with certain small-
scale map projections, many of which are defined only on the sphere. However, all important
projections used for large-scale work, including Transverse Mercator and Lambert Conformal Conic,
are defined on the ellipsoid as well as the sphere.

Like referenceSphere, referenceEllipsoid returns a dimensionless unit sphere by default:

referenceEllipsoid

ans = 

referenceEllipsoid with defining properties:

                 Code: []
                 Name: 'Unit Sphere'
           LengthUnit: ''
        SemimajorAxis: 1
        SemiminorAxis: 1
    InverseFlattening: Inf
         Eccentricity: 0

  and additional properties:

    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume
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More typically, you would request a specific ellipsoid by name, resulting in an object with semimajor
and semiminor axes properties in meters. For example, the following returns a
referenceEllipsoid with SemimajorAxis and InverseFlattening property settings that
match the defining parameters of Geodetic Reference System 1980 (GRS 80).

grs80 = referenceEllipsoid('Geodetic Reference System 1980')

grs80 = 

referenceEllipsoid with defining properties:

                 Code: 7019
                 Name: 'Geodetic Reference System 1980'
           LengthUnit: 'meter'
        SemimajorAxis: 6378137
        SemiminorAxis: 6356752.31414036
    InverseFlattening: 298.257222101
         Eccentricity: 0.0818191910428158

  and additional properties:

    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

In general, you should use the reference ellipsoid corresponding to the geodetic datum to which the
coordinates of your data are referenced. For instance, the GRS 80 ellipsoid is specified for use with
coordinates referenced to the North American Datum of 1983 (NAD 83).

As in the case of referenceSphere, you can reset the length unit if desired:

grs80.LengthUnit = 'kilometer'

grs80 = 

referenceEllipsoid with defining properties:

                 Code: 7019
                 Name: 'Geodetic Reference System 1980'
           LengthUnit: 'kilometer'
        SemimajorAxis: 6378.137
        SemiminorAxis: 6356.75231414036
    InverseFlattening: 298.257222101
         Eccentricity: 0.0818191910428158

  and additional properties:

    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

or specify the length unit at the time of construction:

referenceEllipsoid('Geodetic Reference System 1980','km')
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ans = 

referenceEllipsoid with defining properties:

                 Code: 7019
                 Name: 'Geodetic Reference System 1980'
           LengthUnit: 'kilometer'
        SemimajorAxis: 6378.137
        SemiminorAxis: 6356.75231414036
    InverseFlattening: 298.257222101
         Eccentricity: 0.0818191910428158

  and additional properties:

    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

Any length unit supported by validateLengthUnit can be used.

The command-line display includes four geometric properties: SemimajorAxis, SemiminorAxis,
InverseFlattening, and Eccentricity. Any pair of these properties, as long as at least one is an
axis length, is sufficient to fully define a oblate spheroid; the four properties constitute a mutually
dependent set. Parameters InverseFlattening and Eccentricity as a set are not sufficient to
define an ellipsoid because both are dimensionless shape properties. Neither of those parameters
provides a length scale, and, furthermore, are mutually dependent: ecc = sqrt((2 - f) * f).

In addition, there are five dependent properties that are not displayed, in order to reduce clutter on
the command line: Flattening, ThirdFlattening, MeanRadius, SurfaceArea, and Volume.
SurfaceArea and Volume work the same way as their referenceSphere counterparts. To continue
the preceding example, the surface area of the GRS 80 ellipsoid in square kilometers (because
LengthUnit is 'kilometer'), is easily obtained as follows:

grs80.SurfaceArea

ans =
   5.1007e+08

See the referenceEllipsoid reference page for definitions of the shape properties, permissible
values for the Name property, and information on the Code property.

World Geodetic System 1984
Due in part to widespread use of the U.S. NAVSTAR Global Positioning System (GPS), which is tied to
World Geodetic System 1984 (WGS 84), the WGS 84 reference ellipsoid is often the appropriate
choice. For both convenience and speed (obtained by bypassing a table look-up step), it's a good idea
in this case to use the wgs84Ellipsoid function, for example,

wgs84 = wgs84Ellipsoid;

The preceding line is equivalent to:

wgs84 = referenceEllipsoid('wgs84');
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but it is easier to type and faster to run. You can also specify a length unit.
wgs84Ellipsoid(lengthUnit), is equivalent to referenceEllipsoid('wgs84',lengthUnit),
where lengthUnit is any unit value accepted by the validateLengthUnit function.

For example, the follow two commands show that the surface area of the WGS 84 ellipsoid is a little
over 5 x 10^14 square meters:

s = wgs84Ellipsoid

s = 

referenceEllipsoid with defining properties:

                 Code: 7030
                 Name: 'World Geodetic System 1984'
           LengthUnit: 'meter'
        SemimajorAxis: 6378137
        SemiminorAxis: 6356752.31424518
    InverseFlattening: 298.257223563
         Eccentricity: 0.0818191908426215

  and additional properties:

    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

s.SurfaceArea 

ans =    

   5.1007e+14 

Ellipsoid Vectors
An ellipsoid vector is simply a 2-by-1 double of the form: [semimajor_axis eccentricity].
Unlike a spheroid object (any instance of referenceSphere, referenceEllipsoid, or
oblateSpheroid), an ellipsoid vector is not self-documenting. Ellipsoid vectors are not even self-
identifying. You have to know that a given 2-by-1 vector is indeed an ellipsoid vector to make any use
of it. This representation does not validate that semimajor_axis is real and positive, for example,
you have to do such validations for yourself.

Many toolbox functions accept ellipsoid vectors as input, but such functions accept spheroid objects
as well and, for the reasons just stated, spheroid objects are recommended over ellipsoid vectors. In
case you have written a function of your own that requires an ellipsoid vector as input, or have
received such a function from someone else, note that you can easily convert any spheroid object s
into an ellipsoid vector as follows:

[s.SemimajorAxis s.Eccentricity]

This means that you can construct a spheroid object using any of the three class constructors, or the
wgs84Ellipsoid function, and hand off the result in the form of an ellipsoid vector if necessary.
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oblateSpheroid Objects
oblateSpheroid is the superclass of referenceEllipsoid. An oblateSpheroid object is just
like a referenceEllipsoid object minus its Code, Name, and LengthUnit properties. In fact, the
primary role of the oblateSpheroid class is to provide the purely geometric properties and
behaviors needed by the referenceEllipsoid class.

For most purposes, you can simply ignore this distinction, and the oblateSpheroid class itself, as a
matter of internal software composition. No harm will come about, because a referenceEllipsoid
object can do anything and be used anywhere that an oblateSpheroid can.

However, you can use oblateSpheroid directly when dealing with an ellipsoid vector that lacks a
specified name or length unit. For example, compute the volume of a ellipsoid with a semimajor axis
of 2000 and eccentricity of 0.1, as shown in the following.

e = [2000 0.1];
s = oblateSpheroid;
s.SemimajorAxis = e(1);
s.Eccentricity = e(2)
s.Volume

s = 

oblateSpheroid with defining properties:

        SemimajorAxis: 2000
        SemiminorAxis: 1989.97487421324
    InverseFlattening: 199.498743710662
         Eccentricity: 0.1

  and additional properties:

    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

ans =

   3.3342e+10

Of course, since the length unit of e is unspecified, the unit of s.Volume is likewise unspecified.
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Work with Reference Spheroids
Reference spheroids are needed in three main contexts: map projections, curves and areas on the
surface of a spheroid, and 3-D computations involving geodetic coordinates.

Map Projections
You can set the value of the Geoid property of a new axesm-based map (which is actually a Spheroid
property) using any type of reference spheroid representation. Except in the case of UTM and UPS,
the default value is an ellipsoid vector representing the unit sphere: [1 0]. It is also the default
value when using the worldmap and usamap functions.

You can reset the Geoid property of an existing axesm-based map to any type of reference spheroid
representation by using setm. For example, worldmap always sets up a projection based on the unit
sphere but you can subsequently use setm to switch to the spheroid of your choice. To set up a map
of North America for use with Geodetic Reference System 1980, for instance, follow worldmap with a
call to setm, like this:

ax = worldmap('North America');
setm(ax,'geoid',referenceEllipsoid('grs80'))

When projecting or unprojecting data without an axesm-based map, you can set the geoid field of a
map projection structure (mstruct) to any type of reference spheroid representation. Remember to
follow all mstruct updates with a second call to defaultm to ensure that all properties are set to
legitimate values. For example, to use the Miller projection with WGS 84 in kilometers, start with:

mstruct = defaultm('miller');
mstruct.geoid = wgs84Ellipsoid('km');
mstruct = defaultm(mstruct);

You can inspect the mstruct to ensure that you are indeed using the WGS 84 ellipsoid:

mstruct.geoid

ans = 

referenceEllipsoid with defining properties:

                 Code: 7030
                 Name: 'World Geodetic System 1984'
           LengthUnit: 'kilometer'
        SemimajorAxis: 6378.137
        SemiminorAxis: 6356.75231424518
    InverseFlattening: 298.257223563
         Eccentricity: 0.0818191908426215

  and additional properties:

    Flattening
    ThirdFlattening
    MeanRadius
    SurfaceArea
    Volume

See axesm-Based Map Properties for definitions of the fields found in mstructs.
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Curves and Areas
Another important context in which reference spheroids appear is the computation of curves and
areas on the surface of a sphere or oblate spheroid. The distance function, for example, assumes a
sphere by default, but accepts a reference spheroid as an optional input. distance is used to
compute the length of the geodesic or rhumb line arc between a pair of points with given latitudes
and longitudes. If a reference spheroid is provided through the ellipsoid argument, then the unit
used for the arc length output matches the LengthUnit property of the spheroid.

Other functions for working with curves and areas that accept reference spheroids include reckon,
scircle1, scircle2, ellipse1, track1, track2, and areaquad, to name just a few. When using
such functions without their ellipsoid argument, be sure to check the individual function help if
you are unsure about which reference spheroid is assumed by default.

3-D Coordinate Transformations
The third context in which reference spheroids frequently appear is the transformation of geodetic
coordinates (latitude, longitude, and height above the ellipsoid) to other coordinate systems. For
example, the geodetic2ecef function, which converts point locations from a geodetic system to a
geocentric (Earth-Centered Earth-Fixed) Cartesian system, requires a reference spheroid object (or
an ellipsoid vector) as input.
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Latitude and Longitude
Two angles, latitude and longitude, specify the position of a point on the surface of a planet. These
angles can be in degrees or radians; however, degrees are far more common in geographic notation.

Latitude is the angle between the plane of the equator and a line connecting the point in question to
the planet's rotational axis. There are different ways to construct such lines, corresponding to
different types of and resulting values for latitudes. Latitude is positive in the northern hemisphere,
reaching a limit of +90° at the north pole, and negative in the southern hemisphere, reaching a limit
of -90° at the south pole. Lines of constant latitude are called parallels.

Longitude is the angle at the center of the planet between two planes that align with and intersect
along the axis of rotation, perpendicular to the plane of the equator. One plane passes through the
surface point in question, and the other plane is the prime meridian (0° longitude), which is defined
by the location of the Royal Observatory in Greenwich, England. Lines of constant longitude are
called meridians. All meridians converge at the north and south poles (90°N and -90°S), and
consequently longitude is under-specified in those two places.

Longitudes typically range from -180° to +180°, but other ranges can be used, such as 0° to +360°.
Longitudes can also be specified as east of Greenwich (positive) and west of Greenwich (negative).
Adding or subtracting 360° from its longitude does not alter the position of a point. The toolbox
includes a set of functions (wrapTo180, wrapTo360, wrapToPi, and wrapTo2Pi) that convert
longitudes from one range to another. It also provides unwrapMultipart, which "unwraps" vectors
of longitudes in radians by removing the artificial discontinuities that result from forcing all values to
lie within some 360°-wide interval.

Plot Latitude and Longitude

This example shows how to plot latitude and longitude.

load coastlines
axesm('ortho','origin',[45 45]); 
axis off;
gridm on; 
framem on;
mlabel('equator')
plabel(0); 
plabel('fontweight','bold')
plotm(coastlat,coastlon)

 Latitude and Longitude
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Length and Distance Units
Linear measurements of lengths and distances on spheres and spheroids can use the same units they
do on the plane, such as feet, meters, miles, and kilometers. They can be used for

• Absolute positions, such as map coordinates or terrain elevations
• Dimensions, such as a planet’s radius or its semimajor and semiminor axes
• Distances between points or along routes, in 2-D or 3-D space or across terrain

Length units are needed to describe

• The dimensions of a reference sphere or ellipsoid
• The line-of-sight distance between points
• Distances along great circle or rhumb line curves on an ellipsoid or sphere
• X-Y locations in a projected coordinate system or map grid
• Offsets from a map origin (false eastings and northings)
• X-Y-Z locations in Earth-centered Earth-fixed (ECEF) or local vertical systems
• Heights of various types (terrain elevations above a geoid, an ellipsoid, or other reference surface)

Choosing Units of Length
Using the toolbox effectively depends on being consistent about units of length. Depending on the
specific function and the way you are calling it, when you specify lengths, you could be

• Explicitly specifying a radius, reference spheroid object, or ellipsoid vector
• Relying on the function itself to specify a default radius or ellipsoid
• Relying on the reference ellipsoid associated with a map projection structure (mstruct)

Whenever you are doing a computation that involves a reference sphere or ellipsoid, make sure that
the units of length you are using are the same units used to define the radius of the sphere or
semimajor axis of the ellipsoid. These considerations are discussed below.

Converting Units of Length
The following Mapping Toolbox functions convert between different units of length:

• unitsratio computes multiplicative factors for converting between 12 different units of length
as well as between degrees and radians. You can use unitsratio to perform conversions when
neither the input units of length nor the output units of length are known until run time. For
example,

fromUnits = 'radians';
toUnits = 'degrees';
piInDegrees = unitsratio(toUnits, fromUnits) * pi

piInDegrees =

   180
• km2nm, km2sm, nm2km, nm2sm, sm2km, and sm2nm perform simple and convenient conversions

between kilometers, nautical miles, and statute miles.

 Length and Distance Units
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These utility functions accept scalars, vectors, and matrices, or any shape. For an overview of these
functions and angle conversion functions, see “Summary: Available Distance and Angle Conversion
Functions” on page 3-21.
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Angle Representations and Angular Units
In this section...
“Degrees and Radians” on page 3-17
“Degree Representations” on page 3-17
“Latitude and Longitude Formats” on page 3-18

This topic describes the angular units that Mapping Toolbox functions use, how to convert between
common angle representations, and how to format latitude and longitude angles as text.

Use angles in mapping applications to indicate absolute positions, relative positions along reference
ellipsoids, and relative positions in 3-D:

• Absolute positions are latitudes and longitudes.
• Relative positions on reference ellipsoids are azimuths along geodesics, great circles, and rhumb

lines. Find these relative positions by using the distance function.
• Relative positions in 3-D are both azimuths and elevations. Find these relative positions by using

the geodetic2aer function.

Degrees and Radians
The most common angular units are degrees and radians. Many Mapping Toolbox functions perform
angle computations in degrees. If your data is in radians, you can convert to degrees by using the
rad2deg function.

Many Mapping Toolbox functions, such as distance and azimuth, use degrees by default and allow
you to choose radians. Some functions, such as unwrapMultipart and meridianarc, use radians
by default or require you to work in radians.

Degree Representations
Angles are commonly represented using degrees (–35.2625°), degrees-minutes (–35° 15.75'), and
degrees-minutes-seconds (–35° 15' 45"). Minutes are 1/60 of a degree and seconds are 1/60 of a
minute.

Because Mapping Toolbox functions perform angle computations using only degrees, if your data has
values in degrees-minutes (DM) or degrees-minutes-seconds (DMS), you must convert the values to
degrees before using them as input. Convert numeric values from DM or DMS to degrees by using
the dm2degrees or dms2degrees function. You can also convert text values from DM or DMS to
degrees by using the str2angle function.

If you want to publish coordinate values or format data for use with other applications, then you can
convert degrees to DM or DMS. Convert degrees to DM or DMS by using the degrees2dm or
degrees2dms function.

Degrees

Degrees represent angles using a sign or direction and a nonnegative decimal number. For example,
you can represent a longitude of 35.2625 degrees west of the prime meridian as –35.2625° or
35.2625° W.
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Note Decimal degrees is a common way to refer to noninteger latitude and longitude values. The
term is appropriate for angles formatted in text using decimal notation, such as when printed in a
document or displayed at the MATLAB command line. However, the term is inaccurate for angles in
degrees that are stored in computer memory, such as in MATLAB variables. Angles are stored in
memory as single or double precision floating-point numbers, which are binary representations, not
decimal representations. Therefore, the term degrees is more accurate than decimal degrees for
angles stored in memory, even when the angles have noninteger values.

Degrees-Minutes

Degrees-minutes represent angles using a sign or direction and two numbers:

• Degrees (°) — A signed or unsigned integer
• Minutes (') — A nonnegative decimal number in the range [0 60)

For example, a longitude of –35.2625 in degrees is –35° 15.75' or 35° 15.75' W in DM. This code
shows how to convert numbers in DM to degrees by using the dm2degrees function.

dm2degrees([-35 15.75])

ans =

  -35.2625

Degrees-Minutes-Seconds

Degrees-minutes-seconds represent angles using a sign or direction and three numbers:

• Degrees (°) — A signed or unsigned integer
• Minutes (') — A nonnegative integer in the range [0 59]
• Seconds (") — A nonnegative decimal number in the range [0 60)

For example, a longitude of –35.2625 in degrees is –35° 15' 45" or 35° 15' 45" W in DMS. This code
shows how to convert numbers in DMS to degrees by using the dms2degrees function.

dms2degrees([-35 15 45])

ans =

  -35.2625

Latitude and Longitude Formats
You can format latitudes and longitudes by using letters or symbols:

• Degrees — d or °
• Minutes — m or '
• Seconds — s or "

You can also indicate the sign of the angle by using letters:

• Positive latitude — N
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• Negative latitude — S
• Positive longitude — E
• Negative longitude — W

For example, you can format 35 degrees, 15 minutes, 45 seconds west of the prime meridian as
35d15m45sW, 35° 15' 45" W, or –35° 15' 45".

Convert latitudes and longitudes in degrees to character arrays in DM or DMS for use with LaTeX by
using the angl2str function. This code shows how to convert a longitude of -36.2625 degrees to a
character array that uses DMS.

angl2str(-35.2625,"ew","degrees2dms")

ans =

    ' 35^{\circ} 15' 45.00" W '

If you want to format angles in ways that the angl2str function does not support, first convert the
angle from decimal degrees to numbers in DM or DMS by using the degrees2dms or degrees2dm
function. Then, format the numbers into a string or character vector by using the sprintf function.

This code shows how to convert the same longitude to a character array that uses Unicode® instead
of LaTeX.

dm = degrees2dms(-35.2625);
sprintf('%d\x00B0 %u\x0027 %.2f\x0022 W',dm)

ans =

    '-35° 15' 45.00" W'

See Also
Functions
toDegrees
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Distances on the Sphere
In this section...
“Arc Length as an Angle in the distance and reckon Functions” on page 3-21
“Summary: Available Distance and Angle Conversion Functions” on page 3-21

Many geospatial domains (seismology, for example) describe distances between points on the surface
of the earth as angles. This is simply the result of dividing the length of the shortest great-circle arc
connecting a pair points by the radius of the Earth (or whatever planet one is measuring). This gives
the angle (in radians) subtended by rays from each point that join at the center of the Earth (or other
planet). This is sometimes called a "spherical distance." You can thus call the resulting number a
"distance in radians." You could also call the same number a "distance in earth radii." When you work
with transformations of geodata, keep this in mind.

You can easily convert that angle from radians to degrees. For example, you can call distance to
compute the distance in meters from London to Kuala Lumpur:

latL =  51.5188;
lonL =  -0.1300;
latK =   2.9519;
lonK = 101.8200;
earthRadiusInMeters = 6371000;
distInMeters = distance(latL, lonL,...
                latK, lonK, earthRadiusInMeters)

distInMeters =
  1.0571e+007

Then convert the result to an angle in radians:

distInRadians = distInMeters / earthRadiusInMeters

distInRadians =
    1.6593

Finally, convert to an angle in degrees:

distInDegrees = rad2deg(distInRadians)

distInDegrees =
   95.0692

This really only makes sense and produces accurate results when we approximate the Earth (or
planet) as a sphere. On an ellipsoid, one can only describe the distance along a geodesic curve using
a unit of length.

Mapping Toolbox software includes a set of six functions to conveniently convert distances along the
surface of the Earth (or another planet) from units of kilometers (km), nautical miles (nm), or statute
miles (sm) to spherical distances in degrees (deg) or radians (rad):

• km2deg, nm2deg, and sm2deg go from length to angle in degrees
• km2rad, nm2rad, and sm2rad go from length to angle in radians

You could replace the final two steps in the preceding example with
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distInKilometers = distInMeters/1000;
earthRadiusInKm = 6371;
km2deg(distInKilometers, earthRadiusInKm)

ans =
   95.0692

Because these conversion can be reversed, the toolbox includes another six convenience functions
that convert an angle subtended at the center of a sphere, in degrees or radians, to a great-circle
distance along the surface of that sphere:

• deg2km, deg2nm, and deg2sm go from angle in degrees to length
• rad2km, rad2nm, and rad2sm go from angle in radians to length

When given a single input argument, all 12 functions assume a radius of 6,371,000 meters (6371 km,
3440.065 nm, or 3958.748 sm), which is widely-used as an estimate of the average radius of the
Earth. An optional second parameter can be used to specify a planetary radius (in output length
units) or the name of an object in the Solar System.

Arc Length as an Angle in the distance and reckon Functions
Certain syntaxes of the distance and reckon functions use angles to denote distances in the way
described above. In the following statements, the range argument, arclen, is in degrees (along with
all the other inputs and outputs):

[arclen, az] = distance(lat1, lon1, lat2, lon2)
[latout, lonout] = reckon(lat, lon, arclen, az)

By adding the optional units argument, you can use radians instead:

[arclen, az] = distance(lat1, lon1, lat2, lon2, 'radians')
[latout, lonout] = reckon(lat, lon, arclen, az, 'radians')

If an ellipsoid argument is provided, however, then arclen has units of length, and they match
the units of the semimajor axis length of the reference ellipsoid. If you specify ellipsoid = [1 0]
(the unit sphere), arclen can be considered to be either an angle in radians or a length defined in
units of earth radii. It has the same value either way. Thus, in the following computation, lat1, lon1,
lat2, lon2, and az are in degrees, but arclen will appear to be in radians:

[arclen, az] = distance(lat1, lon1, lat2, lon2, [1 0])

Summary: Available Distance and Angle Conversion Functions
The following table shows the Mapping Toolbox unit-to-unit distance and arc conversion functions.
They all accept scalar, vector, and higher-dimension inputs. The first two columns and rows involve
angle units, the last three involve distance units:
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Functions that Directly Convert Angles, Lengths, and Spherical Distances

Convert To Degrees To Radians To Kilometers To Nautical
Miles

To Statute Miles

Degrees toDegrees
fromDegrees

deg2rad
toRadians
fromDegrees

deg2km deg2nm deg2sm

Radians rad2deg
toDegrees
fromRadians

toRadians
fromRadians

rad2km rad2nm rad2sm

Kilometers km2deg km2rad  km2nm km2sm
Nautical Miles nm2deg nm2rad nm2km  nm2sm
Statute Miles sm2deg sm2rad sm2km sm2nm  

The angle conversion functions along the major diagonal, toDegrees, toRadians, fromDegrees,
and fromRadians, can have no-op results. They are intended for use in applications that have no
prior knowledge of what angle units might be input or desired as output.
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Comparison of Rhumb Lines and Great Circles
A line in a plane has constant slope and represents the shortest path between two points. A line on a
sphere can have constant slope or can represent the shortest path between two points, but not
necessarily both. If a line on a sphere has constant slope (constant azimuth), then the line follows a
rhumb line path. If a line on a sphere represents the shortest path between two points, then the line
follows a great circle path.

This figure illustrates two distant locations connected by a great circle path and a rhumb line path.

Rhumb Lines
A rhumb line, also known as a loxodrome, is a curve with a constant azimuth. An azimuth is the angle
a line makes with a meridian, measured clockwise from north.

All parallels are rhumb lines because they cross meridians at 90° angles. Additionally, all meridians
are rhumb lines.

In general, rhumb lines spiral toward one of the poles. If the azimuth of a rhumb line is true east,
west, north, or south, then the rhumb line connects with itself to form a small circle or a pair of
antipodal meridians.

Rhumb lines are useful for navigation because the bearing (azimuth) does not change along the route.
While rhumb line paths are longer than great circle paths, the constant bearing makes rhumb line
paths easier to navigate.

 Comparison of Rhumb Lines and Great Circles
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Great Circles
A great circle is the shortest path between two points along the surface of a sphere, as defined by the
intersection of the surface of the sphere and a plane passing through the center of the sphere. Great
circles always bisect the sphere.

The equator and all meridians are both great circles and rhumb lines. Other great circles are not
rhumb lines because they do not have a constant azimuth. Instead, they cross successive meridians at
different angles.

Great circles are examples of geodesics. A geodesic is the shortest path between two points on a
curved surface, such as the shortest path on an ellipsoid.

Great circles are less useful for navigation because, in general, the bearing changes along the route.
While great circle paths are shorter than rhumb line paths, the changes in bearing make great circle
paths more difficult to navigate.

Use Rhumb Lines and Great Circles in Functions
Several geometric geodesy functions enable you to specify whether a path follows a rhumb line or a
great circle. For example, you can generate track points along either a rhumb line or great circle path
by using the track2 function. You can also find the length of the rhumb line or great circle path that
connects two points by using the distance function.

See Also
Functions
track1 | track | azimuth | reckon
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Generate Small Circles

A small circle is the intersection of a plane with the surface of a sphere, such as a parallel of latitude
on a spherical representation of the Earth. You can generate a small circle from the center point and
a point on the perimeter by using the scircle2 function. You can generate a small circle from the
center point and the arc length of the radius by using the scircle1 function.

For this example, create a small circle that surrounds Norway, Sweden, and Finland by using the
scircle2 function and then create an identical small circle by using the scircle1 function.

First, specify the coordinates of a center point and a point along the perimeter. Find the coordinates
of 100 points that make up the small circle by using the scircle2 function.

centerLat = 62; 
centerLon = 20;
perimeterLat = 72;
perimeterLon = 19;
[lat2,lon2] = scircle2(centerLat,centerLon, ...
    perimeterLat,perimeterLon);

Calculate the arc length in degrees between the center point and the point along the perimeter. Find
the coordinates of the same small circle by using the scircle1 function.

[arclen,~] = distance(centerLat,centerLon, ...
    perimeterLat,perimeterLon);
[lat1,lon1] = scircle1(centerLat,centerLon,arclen);

Verify that the small circles are identical, within a tolerance.

dLat = abs(lat1-lat2);
dLon = abs(lon1-lon2);
all(dLat < 1e-12)

ans = logical
   1

all(dLon < 1e-12)

ans = logical
   1

Display the center point, perimeter point, and small circle on the surface of a geographic globe.
Change the view by using the campos function.

uif = uifigure;
g = geoglobe(uif,'Terrain','none');
hold(g,'on')

geoplot3(g,centerLat,centerLon,0,'ro','LineWidth',2)
geoplot3(g,perimeterLat,perimeterLon,0,'ro','LineWidth',2)
geoplot3(g,lat1,lon1,0,'r','LineWidth',2)

campos(g,40,-18,10000000)

 Generate Small Circles
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See Also
scircle1 | scircle2

3 Understanding Geospatial Geometry

3-26



Measure Area of Spherical Quadrangles
In solid geometry, the area of a spherical quadrangle can be exactly calculated. A spherical
quadrangle is the intersection of a lune and a zone. In geographic terms, a quadrangle is defined as a
region bounded by parallels north and south, and meridians east and west.

In the pictured example, a quadrangle is formed by the intersection of a zone, which is the region
bounded by 15°N and 45°N latitudes, and a lune, which is the region bounded by 0° and 30°E
longitude. Under the spherical planet assumption, the fraction of the entire spherical surface area
inscribed in the quadrangle can be calculated:

area = areaquad(15,0,45,30)

area =
      0.0187

That is, less than 2% of the planet's surface area is in this quadrangle. To get an absolute figure in,
for example, square miles, you must provide the appropriate spherical radius. The radius of the Earth
is about 3958.9 miles:

area = areaquad(15,0,45,30,3958.9)

area =
     3.6788e+06

The surface area within this quadrangle is over 3.6 million square miles for a spherical Earth.

 Measure Area of Spherical Quadrangles
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Plotting a 3-D Dome as a Mesh over a Globe

This example shows how to start with a 3-D feature in a system of local east-north-up (ENU)
coordinates, then transform and combine it with a globe display in Earth-Centered, Earth-Fixed
(ECEF) coordinates.

Step 1: Set Defining Parameters

Use Geodetic Reference System 1980 (GRS80) and work in units of kilometers. Place the origin of the
local system near Washington, DC, USA.

grs80 = referenceEllipsoid("grs80","km");
domeRadius =  3000;  % km
domeLat =  39;       % degrees
domeLon = -77;       % degrees
domeAlt = 0;         % km

Step 2: Construct the Dome in Local East-North-Up Coordinates

The local ENU system is defined with respect to a geodetic reference point, specified in this case by
(domeLat, domeLon, and domeAlt). It is a 3-D Cartesian system in which the positive x-axis is
directed to the east, the positive y-axis is directed to the north, and the z-axis is normal to the
reference ellipsoid and directed upward.

In this example, the 3-D feature is a hemisphere in the z >= 0 half-space with a radius of 3000
kilometers. This hemisphere could enclose, hypothetically, the volume of space within range of a
idealized radar system having uniform coverage from the horizon to the zenith, in all azimuths.
Volumes of space such as this, when representing zones of effective surveillance coverage, are
sometimes known informally as "radar domes."

A quick way to construct coordinate arrays outlining a closed hemispheric dome is to start with a unit
sphere, scale up the radius, and collapse the lower hemisphere. It's easier to visualize if you make it
semitransparent -- setting the FaceAlpha to 0.5 in this case.

[x,y,z] = sphere(20);
xEast  = domeRadius * x;
yNorth = domeRadius * y;
zUp    = domeRadius * z;
zUp(zUp < 0) = 0;
surf(xEast,yNorth,zUp,"FaceColor","yellow","FaceAlpha",0.5)
axis equal
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Step 3: Convert Dome to the Earth-Centered Earth-Fixed (ECEF) System

Use the enu2ecef function to convert the dome from local ENU to an ECEF system, based on the
GRS 80 reference ellipsoid. It applies a 3-D translation and rotation. Notice how the hemisphere
becomes tilted and how its center moves thousands of kilometers from the origin.

[xECEF, yECEF, zECEF] ...
    = enu2ecef(xEast,yNorth,zUp,domeLat,domeLon,domeAlt,grs80);
surf(xECEF,yECEF,zECEF,"FaceColor","yellow","FaceAlpha",0.5)
axis equal
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Step 4: Construct a Globe Display

Construct a basic globe display using axesm and globe.

figure
ax = axesm("globe","Geoid",grs80,"Grid","on", ...
    "GLineWidth",1,"GLineStyle","-",...
    "Gcolor",[0.9 0.9 0.1],"Galtitude",100);
ax.Position = [0 0 1 1];
axis equal off
view(3)
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Step 5: Add Various Global Map Data

Add low-resolution global topography, coastlines, and rivers to the globe.

load topo60c
geoshow(topo60c,topo60cR,"DisplayType","texturemap")
demcmap(topo60c)

load coastlines
geoshow(coastlat,coastlon,"Color","black")

rivers = readgeotable("worldrivers.shp");
geoshow(rivers,"Color","blue")
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Step 6: Add the Dome to the Globe Display

Add the ECEF version of dome to the globe axes as a semitransparent mesh.

surf(xECEF,yECEF,zECEF,"FaceColor","yellow","FaceAlpha",0.5)
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You can view the dome and globe from different angles by interactively rotating the axes.

Credit

Thanks to Edward J. Mayhew, Jr. for providing technical background on "radar domes" and for
bringing to our attention the problem of visualizing them with the Mapping Toolbox™.
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Comparison of 3-D Coordinate Systems
Coordinate systems represent position on the Earth using coordinates. Mapping Toolbox functions
transform coordinates between Earth-centered Earth-fixed (ECEF), geodetic, east-north-up (ENU),
north-east-down (NED), and azimuth-elevation-range (AER) systems.

Global systems such as ECEF and geodetic systems describe the position of an object using a triplet
of coordinates. Local systems such as ENU, NED, and AER systems require two triplets of
coordinates: one triplet describes the location of the origin, and the other triplet describes the
location of the object with respect to the origin.

When you work with 3-D coordinate systems, you must specify an ellipsoid model that approximates
the shape of the Earth. For more information about ellipsoid models, see “Comparison of Reference
Spheroids” on page 3-4. All of the sample coordinates on this page use the World Geodetic System of
1984 (WGS84).

Earth-Centered Earth-Fixed Coordinates
An Earth-centered Earth-fixed (ECEF) system uses the Cartesian coordinates (X,Y,Z) to represent
position relative to the center of the reference ellipsoid. The distance between the center of the
ellipsoid and the center of the Earth depends on the reference ellipsoid.

• The positive X-axis intersects the surface of the ellipsoid at 0° latitude and 0° longitude, where the
equator meets the prime meridian.

• The positive Y-axis intersects the surface of the ellipsoid at 0° latitude and 90° longitude.
• The positive Z-axis intersects the surface of the ellipsoid at 90° latitude and 0° longitude, the

North Pole.

For example, the ECEF coordinates of Parc des Buttes-Chaumont are (4198945 m, 174747 m,
4781887 m).
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Geodetic Coordinates
A geodetic system uses the coordinates (lat,lon,h) to represent position relative to a reference
ellipsoid.

• lat, the latitude, originates at the equator. More specifically, the latitude of a point is the angle a
normal to the ellipsoid at that point makes with the equatorial plane, which contains the center
and equator of the ellipsoid. An angle of latitude is within the range [–90°, 90°]. Positive latitudes
correspond to north and negative latitudes correspond to south.

• lon, the longitude, originates at the prime meridian. More specifically, the longitude of a point is
the angle that a plane containing the ellipsoid center and the meridian containing that point
makes with the plane containing the ellipsoid center and prime meridian. Positive longitudes are
measured in a counterclockwise direction from a vantage point above the North Pole. Typically,
longitude is within the range [–180°, 180°] or [0°, 360°].

• h, the ellipsoidal height, is measured along a normal of the reference spheroid. Coordinate
transformation functions such as geodetic2ecef require you to specify h in the same units as
the reference ellipsoid. You can change the units of the reference ellipsoid using the LengthUnit
property. Terrain models typically supply data using orthometric height rather than ellipsoidal
height. For information about calculating ellipsoidal height from orthometric height, see “Find
Ellipsoidal Height from Orthometric and Geoid Height” on page 3-43.
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For example, the geodetic coordinates of Parc des Buttes-Chaumont are (48.8800°, 2.3831°, 124.5089
m).

East-North-Up Coordinates
An east-north-up (ENU) system uses the Cartesian coordinates (xEast,yNorth,zUp) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(lat0,lon0,h0). Note that the origin does not necessarily lie on the surface of the ellipsoid.

• The positive xEast-axis points east along the parallel of latitude containing lat0.
• The positive yNorth-axis points north along the meridian of longitude containing lon0.
• The positive zUp-axis points upward along the ellipsoid normal.

For example, Montmartre has geodetic coordinates (48.8862°, 2.3343°, 174.5217 m). The ENU
coordinates of Parc des Buttes-Chaumont with respect to Montmartre are (3579.4232 m, –688.3514
m, –51.0524 m).

North-East-Down Coordinates
A north-east-down (NED) system uses the Cartesian coordinates (xNorth,yEast,zDown) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(lat0,lon0,h0). Typically, the local origin of an NED system is above the surface of the Earth.
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• The positive xNorth-axis points north along the meridian of longitude containing lon0.
• The positive yEast-axis points east along the parallel of latitude containing lat0.
• The positive zDown-axis points downward along the ellipsoid normal.

An NED coordinate system is commonly used to specify location relative to a moving aircraft. In this
application, the origin and axes of an NED system change continuously. Note that the coordinates are
not fixed to the frame of the aircraft.

For example, an aircraft flying into Charles de Gaulle airport has geodetic coordinates (48.9978°,
2.7594°, 699.8683 m). The NED coordinates of the airport with respect to the plane are (1645.8313
m, –15677.1868 m, 555.8221 m).

Azimuth-Elevation-Range Coordinates
An azimuth-elevation-range (AER) system uses the spherical coordinates (az,elev,range) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(lat0,lon0,h0). Azimuth, elevation, and slant range are dependent on a local Cartesian system, for
example, an ENU system.

• az, the azimuth, is the clockwise angle in the xEast-yNorth plane from the positive yNorth-axis to
the projection of the object into the plane.

• elev, the elevation, is the angle from the xEast-yNorth plane to the object.
• range, the slant range, is the Euclidean distance between the object and the local origin.
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For example, a lidar sensor at the Charles de Gaulle airport has geodetic coordinates (48.0124°,
2.5451°, 163.4885 m). The AER coordinates of an airplane with respect to the sensor are (95.8314°,
1.8781°, 15773.1381 m).

Tips
If you are transforming coordinates between ENU, NED, and AER systems with the same origin, then
you do not need to specify a reference ellipsoid or the coordinates of the origin.

See Also
geodetic2ecef | ecef2enu | enu2aer | aer2ned | ned2geodetic | geodetic2aer

More About
• “Comparison of Reference Spheroids” on page 3-4

References
[1] Guowei, C., B.M. Cheh, and T. H. Lee. Unmanned Rotorcraft Systems. London: Springer-Verlag

London Limited: 2011.

[2] Van Sickle, J. Basic GIS Coordinates. Boca Raton, FL: CRC Press LLC, 2004.
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Vectors in 3-D Coordinate Systems
Vectors represent quantities such as velocity and acceleration. Mapping Toolbox functions transform
vector components between Earth-centered Earth-fixed (ECEF) and east-north-up (ENU) or north-
east-down (NED) systems. For more information about ECEF, ENU, and NED coordinate systems, see
“Comparison of 3-D Coordinate Systems” on page 3-34.

Unlike coordinates that measure position, vector components in a Cartesian system do not depend on
a position in space. Therefore, when you transform a vector from one system to another, only the
components of the vector change. The magnitude of the vector remains the same.

For example, this image shows a 2-D vector transformation from an x-y system to a u-v system. The
vector has components x = 2 and y = 1 in the x-y system, and components u = 1.30 and v = 1.82 in
the u-v system. The components of the vector are different, but in each system the magnitude of the
vector is 2.24 units.

This image shows a coordinate transformation from a global ECEF system to a local ENU system
using ecef2enu. The position vectors start at the origin of each system and end at point P.
Therefore, the transformation changes the magnitude of the position vector.

 Vectors in 3-D Coordinate Systems
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This image shows a vector transformation from a global ECEF system to a local ENU system using
ecef2enuv. The vector r does not depend on a position. Therefore, the transformation changes the
components of the vector, but the magnitude of the vector is the same.

Tips
Unlike coordinate transformation functions such as ecef2enu, vector transformation functions such
as ecef2enuv do not require you to specify a reference spheroid or the ellipsoidal height of the local
origin. The geodetic latitude and longitude of the local origin is sufficient to define the orientation of
the uEast, vNorth, and wUp axes.

See Also
enu2ecefv | ned2ecefv | ecef2nedv | ecef2enuv
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More About
• “Comparison of 3-D Coordinate Systems” on page 3-34
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Find Ellipsoidal Height from Orthometric Height
The height of an object may refer to its ellipsoidal height or its orthometric height. Mapping Toolbox
functions such as geodetic2enu require the input argument ellipsoidal height, but data often
quantifies orthometric height instead. You can convert orthometric height to ellipsoidal height by
using a geoid model.

Ellipsoidal height, called h, is height measured along a normal of a reference ellipsoid. For more
information about reference ellipsoids, see “Comparison of Reference Spheroids” on page 3-4. This
image shows a positive ellipsoidal height, hp, and a negative ellipsoidal height, hn.

Most terrain models provide data using orthometric height instead of ellipsoidal height. Orthometric
height, called H, is height above the geoid.

The geoid models the average sea level of the Earth without effects such as weather, tides, and land.
A geoid model is created by measuring variations in the Earth's gravitational field, so it has a
smoothly undulating shape. Orthometric height is measured relative to the geoid.

Geoid height, called N, is the height of the geoid measured along a normal of a reference ellipsoid.
For example, geoid height values from the Earth Gravitational Model of 1996 (EGM96) are referenced
to the ellipsoid defined by the World Geodetic System of 1984 (WGS84). Below is an illustration of the
geoid from EGM96, with geoid heights in meters.
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To find ellipsoidal height at a specified latitude and longitude, add the orthometric height and geoid
height: h = H + N. You can find the height of the geoid from EGM96 at specified latitudes and
longitudes using the egm96geoid function.

The equation h = H + N is an approximation because the direction along which a geoid height is
measured is not necessarily the same as the direction along which an orthometric height is measured.
However, the approximation is suitable for most practical purposes.

The following image illustrates the relationship between ellipsoidal height, orthometric height, and
the geoid. The values h1, H1, and N1 demonstrate the relationship for an airborne object, while h2, H2,
and N2 demonstrate the relationship for an object on land.

Find Ellipsoidal Height from Orthometric and Geoid Height

 Find Ellipsoidal Height from Orthometric Height
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Find the ellipsoidal height of the summit of Mount Everest, using its orthometric height and a geoid
model.

Specify the latitude and longitude of the summit in degrees. Specify the orthometric height in meters.

lat = 27.988056;
lon = 86.925278;
H = 8848;

Find the height of the geoid at the location specified by lat and lon using egm96geoid.

N = egm96geoid(lat,lon);

Calculate the ellipsoidal height of the summit.

h = H + N

h = 8.8193e+03

References
[1] NOAA. "What is the geoid?" National Ocean Service website. https://oceanservice.noaa.gov/facts/

geoid.html, 06/25/18.

See Also
egm96geoid | geodetic2enu

More About
• “Comparison of Reference Spheroids” on page 3-4
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Creating and Viewing Maps

• “Choose a 2-D Map Display” on page 4-2
• “Create Common Plots Using Map Axes” on page 4-7
• “Change Projection and Projection Parameters” on page 4-13
• “Create Map Axes in an App” on page 4-19
• “axesm-Based Maps” on page 4-23
• “Create Maps of World and US Regions” on page 4-25
• “Switch Between Projections” on page 4-30
• “Reprojection of Graphics Objects” on page 4-37
• “Change Map Projections Using geoshow” on page 4-40
• “Summary of Polygon Display Functions” on page 4-44
• “Display Vector Data as Points and Lines” on page 4-46
• “Display Vector Data as Lines and Patches” on page 4-51
• “Types of Data Grids and Raster Display Functions” on page 4-55
• “Fit Gridded Data to the Graticule” on page 4-56
• “Create 3-D Displays with Raster Data” on page 4-60
• “Create Map Displays with Geographic Data” on page 4-63
• “Create Maps with Data in Projected Coordinate Reference Systems” on page 4-73
• “Interactively Identify Geographic Locations” on page 4-82
• “Create an Interactive Map for Selecting Point Features” on page 4-87
• “Interactively Create Small Circle and Track Annotations on Maps” on page 4-93
• “Interactively Display Text on Maps” on page 4-95
• “Work with Objects by Name” on page 4-100
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Choose a 2-D Map Display
Mapping Toolbox provides several options for creating 2-D map displays. Choose a map display based
on criteria such as the map projection, the type of data, and interactivity options.

Sample Goals Map Display Option Sample Map Related Information
Projection

• Use a projected
coordinate reference
system (CRS)
defined by a
geospatial data file
or by the EPSG.

• View a polar region.

Data

• Plot data originating
in a mixture of
projected and
geographic
coordinates.

• Plot vector data.

Interactivity

• Interactively explore
using pan, zoom, and
data tips.

• Build apps using
App Designer.

Use a map axes object.

• Create a map axes
from a projected
CRS by using the
newmap function.
Specify the projected
CRS by using a
projcrs object.

• Plot data into map
axes by using
functions such as
geoplot,
geoscatter, and
bubblechart.

• Customize map axes
using MATLAB
graphics functions.
For example, change
the geographic limits
using geolimits,
add text using text,
and change the
format of the tick
labels using
geotickformat.

• “Create Common
Plots Using Map
Axes” on page 4-7

• “Change Projection
and Projection
Parameters” on page
4-13

• “Customize
Appearance of Map
Axes” on page 6-10

• “Create Map Axes in
an App” on page 4-
19

4 Creating and Viewing Maps
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Sample Goals Map Display Option Sample Map Related Information
Projection

• Use a Web Mercator
map projection,
which is common for
web-based mapping
workflows.

Data

• Provide geographic
context using high-
zoom-level
basemaps.

• Plot data originating
in a mixture of
projected and
geographic
coordinates.

• Plot vector data.

Interactivity

• Interactively explore
using pan, zoom, and
data tips.

• Build apps using
App Designer.

Use a geographic axes
object.

• Unlike map axes,
geographic axes do
not require you to
create an axes
before plotting data.
All geographic axes
use a Web Mercator
projection.

• Plot data into
geographic axes by
using functions such
as geoplot,
geoscatter, and
geodensityplot.

• Customize
geographic axes
using MATLAB
graphics functions.
For example, change
the basemap using
geobasemap,
change the
geographic limits
using geolimits,
add text using text,
and change the
format of the tick
labels using
geotickformat.

• “Create Choropleth
Map from Table
Data” on page 6-88

• “Create
Classification Map
from Table Data” on
page 6-92
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Sample Goals Map Display Option Sample Map Related Information
Projection

• Use a map
projection
appropriate for a
world or US region
by specifying the
name of the region,
for example Europe
or California.

• Use a predefined
projection defined by
MATLAB.

• View a polar region.

Data

• Plot data in
geographic
coordinates.

• Plot a mixture of
vector and raster
data.

Use an axesm-based
map.

• Create axesm-based
maps of world or US
regions by using the
worldmap and
usamap functions,
respectively. Create
axesm-based maps
that use predefined
projections by using
the axesm function.

• Plot data into axesm-
based maps by using
functions such as
geoshow and
contourm.

• Customize axesm-
based maps by using
Mapping Toolbox
functions. For
example, add text
using textm, add a
scale ruler using
scaleruler, and
add a north arrow
using northarrow.

• “Create Maps of
World and US
Regions” on page 4-
25

• “Summary and
Guide to
Projections” on page
8-45

• “Create Map
Displays with
Geographic Data” on
page 4-63

4 Creating and Viewing Maps
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Sample Goals Map Display Option Sample Map Related Information
Projection

• Plot data already in
a projection using
Cartesian axes.

Data

• Plot data in
projected
coordinates.

• Plot a mixture of
vector and raster
data.

• Plot data using a plot
type not supported
by map axes or
geographic axes, for
example digraphs
and contours.

Interactivity

• Build apps using
App Designer.

Use an axes object.

• Axes do not require
you to create the
axes before plotting
data.

• Plot map data into
axes by using
functions such as
mapshow, digraph,
and binscatter.

• Customize axes
using MATLAB
graphics functions.
For example, add
text using text and
change the map
limits using xlim
and ylim.

• “Create Maps with
Data in Projected
Coordinate
Reference Systems”
on page 4-73

• “Create Common
Plots over Basemap
Images” on page 6-
58
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Sample Goals Map Display Option Sample Map Related Information
Projection

• Use a Web Mercator
map projection,
which is common for
web-based mapping
workflows.

Data

• Provide geographic
context using a data
layer imported from
Web Map Service
(WMS) servers.

• Provide geographic
context using high-
zoom-level
basemaps.

• Plot data originating
in geographic
coordinates.

• Plot vector data.

Interactivity

• Interactively explore
using pan, zoom,
cursor locations, and
data balloons.

Use a web map.

• Web maps do not
require you to create
the map before
plotting data.

• Plot map data into
web maps by using
functions such as
wmline and
wmpolygon.

• Customize web maps
using Mapping
Toolbox functions.
For example, add a
custom icon using
wmmarker and
change the
geographic limits
using wmlimits.

• “Add Line, Polygon,
and Marker Overlay
Layers to Web Maps”
on page 9-71

• “Specify a WMS
Layer as a Base
Layer” on page 9-
67

See Also
Properties
MapAxes Properties | GeographicAxes Properties | axesm-Based Map Properties | Axes Properties
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Create Common Plots Using Map Axes

(Since R2023a)

Map axes objects are a type of axes object, similar to axes objects, geographic axes objects, and polar
axes objects. Map axes support several types of plots, including point, line, and polygon plots
(geoplot), scatter plots (geoscatter), bubble charts (bubblechart), and comet plots (comet). You
can use map axes with many MATLAB graphics functions, including gca, hold, geolimits, title,
and legend.

Create Map Axes

Unlike other types of axes, map axes require you to create the map axes object before plotting data
into it. You can create a map axes object by using the newmap or mapaxes function.

• Use newmap when you want to create a map in the default projection or in a specified projection.
• Use mapaxes when you want advanced control of the map, or when you want to include the map

in an app.

Create Point, Line, and Polygon Plots

Display points, lines, and polygons on map axes by using the geoplot function. You can specify
geospatial tables, shape objects, or numeric coordinates as input to the geoplot function. When you
specify geospatial tables or shape objects, you can plot data in any supported geographic or projected
coordinate reference system (CRS).

Set up a new map. By default, map axes use an Equal Earth map projection.

figure
newmap

Read three shapefiles into the workspace. The files contain world land areas, rivers and cities. Then,
display the land areas as green polygons, the rivers as blue lines, and the city locations as black
points.

land = readgeotable("landareas.shp");
rivers = readgeotable("worldrivers.shp");
cities = readgeotable("worldcities.shp");

geoplot(land,FaceColor=[0.7 0.9 0.5],EdgeColor="none")
hold on
geoplot(rivers,Color=[0 0.4470 0.7410])
geoplot(cities,"k")

Add a title.

title("World Land Areas, Rivers, and Cities")
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Create Scatter Plots

Display scatter plots on map axes by using the geoscatter function. To use the geoscatter
function with map axes, you must specify the coordinates using numeric latitudes and longitudes.

Set up a new map using a projected CRS that is appropriate for Europe. For this example, create the
CRS using the EPSG code 3035, which uses a Lambert Azimuthal Equal Area projection method.

figure
p = projcrs(3035);
newmap(p)

Read a shapefile containing world land areas into the workspace. Provide geographic context for the
map by displaying the land areas.

land = readgeotable("landareas.shp");
geoplot(land,FaceColor=[0.7 0.7 0.7],EdgeColor=[0.65 0.65 0.65])
hold on

Read a shapefile containing the locations of world cities into the workspace. Extract the numeric
latitude and longitude coordinates. Then, display the city locations using a scatter plot.

cities = readgeotable("worldcities.shp");
lat = cities.Shape.Latitude;
lon = cities.Shape.Longitude;
geoscatter(lat,lon,"filled")

Adjust the geographic limits. Then, add a title and subtitle.
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geolimits([35 72],[-25 45])

title("Map of Europe")
subtitle(p.ProjectionMethod)

Create Bubble Charts

Display bubble charts on map axes by using the bubblechart function. To use the bubblechart
function with map axes, you must specify the coordinates using numeric latitudes and longitudes.

Load Data

Load into the workspace a shapefile containing tsunami events, including attributes such as the
maximum heights and the causes. Extract the latitudes, longitudes, maximum heights, and causes.
Replace missing causes with "Unknown Cause".

tsunamis = readgeotable("tsunamis.shp",CoordinateSystemType="geographic");

lat = tsunamis.Shape.Latitude;
lon = tsunamis.Shape.Longitude;
maxheight = tsunamis.Max_Height;
c = categorical(tsunamis.Cause);
c = fillmissing(c,"constant","Unknown Cause");

Set Up Map

This example adds multiple legends to the bubble chart. To manage the alignment of the legends, use
a tiled chart layout.
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figure
t = tiledlayout(1,1);
nexttile

Set up a new map using a projected CRS that is appropriate for Southeast Asia. For this example,
create a CRS using the ESRI code 102030, which uses a Lambert Conic Conformal projection
method.

p = projcrs(102030,Authority="ESRI");
newmap(p)

Read a shapefile containing world land areas into the workspace. Provide geographic context for the
map by displaying a subset of the land areas. Avoid including the land areas in the legend by setting
the HandleVisibility property to "off".

land = readgeotable("landareas.shp");
subland = land([1:2,5:18,20:end],:);
geoplot(subland,HandleVisibility="off",FaceColor=[0.7 0.7 0.7],EdgeColor=[0.65 0.65 0.65])
hold on

Plot Data

Display the data using a bubble chart. To create a legend that illustrates the tsunami causes, use a
separate bubble chart for each cause. Specify the bubble sizes using the maximum heights.

causes = categories(c);
numCauses = length(causes);

mx = gca; 

for k = 1:numCauses
    cause = causes(k);
    idx = c == cause;
    bubblechart(mx,lat(idx),lon(idx),maxheight(idx),DisplayName=string(cause))
end

Note that, to use the bubblechart function with map axes, you must specify the map axes as the
target.

Customize Plot

Customize the plot by changing the bubble sizes, adding legends, changing the geographic limits, and
adding a subtitle and title.

Specify the minimum and maximum bubble sizes (in points).

bubblesize([3 30])

Add two legends. Illustrate the bubble colors using a legend, and illustrate the bubble sizes using a
bubble legend. Store each legend object by specifying an output argument for the bubblelegend
and legend functions. Then, move the legends to the bottom outer tile of the tiled chart layout by
setting the Layout.Tile property on each object to "south".

lgd = legend;
title(lgd,"Cause")
blgd = bubblelegend("Maximum Height (m)");
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lgd.Layout.Tile = "south";
blgd.Layout.Tile = "south";

Change the bubble size limits to reflect the sizes of bubbles in Southeast Asia.

bubblelim([1 50])

Adjust the geographic limits.

geolimits([-20 20],[90 170])

Add a title and subtitle.

title("Tsunamis by Cause and Maximum Height")
subtitle(p.ProjectionMethod)

See Also
Functions
newmap | geoplot | geoscatter | bubblechart

Properties
MapAxes Properties
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Related Examples
• “Customize Appearance of Map Axes” on page 6-10
• “Change Projection and Projection Parameters” on page 4-13
• “Create Geospatial Tables” on page 2-18
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Change Projection and Projection Parameters

Map axes objects use projected coordinate reference systems (CRSs) to transform geographic
(latitude-longitude) coordinates to projected (xy) coordinates. Projected CRSs consist of a geographic
CRS, a projection method, and projection parameters.

You can change the map projection for a map axes object by changing the projected CRS or by
changing the projection parameters. Map axes automatically reproject plotted data when you change
the projected CRS or projection parameters.

Change Projected CRS

Change the map projection for a map axes object by changing the projected CRS.

Plot world land areas using the default map axes.

figure
newmap

land = readgeotable("landareas.shp");
geoplot(land)

View information about the projected CRS stored in the map axes. By default, map axes use the Equal
Earth projection method. This projection method preserves area.
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mx1 = gca;
mx1.ProjectedCRS

ans = 
  projcrs with properties:

                    Name: "WGS 84 / Equal Earth Greenwich"
           GeographicCRS: [1x1 geocrs]
        ProjectionMethod: "Equal Earth"
              LengthUnit: "meter"
    ProjectionParameters: [1x1 map.crs.ProjectionParameters]

Create a projected CRS object that uses an Equidistant Cylindrical projection method. This projection
method preserves distances.

p = projcrs(4087)

p = 
  projcrs with properties:

                    Name: "WGS 84 / World Equidistant Cylindrical"
           GeographicCRS: [1x1 geocrs]
        ProjectionMethod: "Equidistant Cylindrical"
              LengthUnit: "meter"
    ProjectionParameters: [1x1 map.crs.ProjectionParameters]

Change the projected CRS of the map axes. When you change the projected CRS, MATLAB®
automatically updates the map and reprojects the plotted data.

mx1.ProjectedCRS = p;
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Change Projection Parameters

Change the map projection for a map axes object by changing the projected parameters stored in the
projected CRS.

Create a projected CRS object that uses the Bonne projection method.

p = projcrs(54024,Authority="ESRI")

p = 
  projcrs with properties:

                    Name: "World_Bonne"
           GeographicCRS: [1x1 geocrs]
        ProjectionMethod: "Bonne"
              LengthUnit: "meter"
    ProjectionParameters: [1x1 map.crs.ProjectionParameters]

Plot the same world land areas in a map axes object that uses the projected CRS.

figure
newmap(p)
geoplot(land)
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View the projection parameters stored in the projected CRS. For more information about projection
parameters, see the “ProjectionParameters” property description on the projcrs reference page.

mx2 = gca;
mx2.ProjectedCRS.ProjectionParameters

ans = 
  ProjectionParameters object with parameters:

     LatitudeOfNaturalOrigin: 60
    LongitudeOfNaturalOrigin: 0
                FalseEasting: 0
               FalseNorthing: 0

Change the latitude of natural origin to 90. Valid parameter values depend on the parameter and on
the map projection method. When you change a projection parameter, MATLAB automatically updates
the map and reprojects the plotted data.

mx2.ProjectedCRS.ProjectionParameters.LatitudeOfNaturalOrigin = 90;
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Create several world maps that use the Bonne projection method in a tiled chart layout. Use a
different latitude of natural origin for each map.

figure
tiledlayout(2,2,Padding="tight");

for latNaturalOrigin = [1 10 60 90]
    nexttile
    newmap(p)
    geoplot(land)

    mx = gca;
    mx.ProjectedCRS.ProjectionParameters.LatitudeOfNaturalOrigin = latNaturalOrigin;

    mx.FontColor = "none";
    title("Latitude of Natural Origin: " + latNaturalOrigin,Color="k")
end
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See Also
Functions
newmap | geoplot

Objects
projcrs

Properties
MapAxes Properties

Related Examples
• “Create Common Plots Using Map Axes” on page 4-7
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Create Map Axes in an App
This example shows how to include map axes in apps created using App Designer. The example also
shows how to include app components that control the map projection and the visibility of plotted
data.

To view an app created using the steps in this example, see App That Contains Map Axes on page 4-
21.

Create New App
Open App Designer and click 2-Panel App with Auto-Reflow.

appdesigner

Create App Components
Add components to the left panel that control the map projection and the visibility of plotted data.

In the top-right corner of the center pane, select Design View to interactively add app components.

Create a component that controls the map projection.

1 Add a radio button group to the left panel.
2 Change the title of the group to Map Projection.
3 Change the text of the radio buttons to Equal Earth, Winkel Tripel, and Mercator.

Create a component that controls the visibility of plotted coastlines, rivers, and cities.

1 Add a panel to the left panel.
2 Change the title of the new panel to Data.
3 Add three check boxes to the Data panel.
4 Change the text of the check boxes to Coastlines, Rivers, and Cities.
5 Check each check box. For each check box, in the right pane, select Value.

Set Up Map
Add the map to the right panel.

In the top-right corner of the center pane, select Code View to add the map axes object, load and
plot the data, and specify the map projections.

Create a map axes object.

1 Add a private property that stores the map axes object. Storing objects in properties enables you
to access the objects throughout your app code. In the Editor tab, click Property and then
Private Property. Then, change the property name in the properties block to RightMapAxes.

2 Write code that creates a map when you start the app. In the Editor tab, click Callback. Set App
to the application and Callback to StartupFcn. Add code to create a map axes in the right
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panel and store the map axes in the RightMapAxes property. Then, provide geographic context
by displaying world land areas in the map axes.

function startupFcn(app)
    % Create map axes
    app.RightMapAxes = mapaxes(app.RightPanel,NextPlot="add",Color="#A6A6A6");

    % Display land areas
    land = readgeotable("landareas.shp");
    geoplot(app.RightMapAxes,land,FaceColor="#d9d9d9",FaceAlpha=1,EdgeColor="none", ...
        HandleVisibility="off",PickableParts="none")
end

Plot the coastlines, rivers, and cities data.

1 Add private properties that store the plot objects. In the Editor tab, select Property and then
Private Property. Then, change the property name in the properties block to
CoastlinesPlot. Repeat this process to add RiversPlot and CitiesPlot properties.

2 Write code that plots data when you start the app. Within the StartupFcn callback, add code to
plot the coastlines, rivers, and cities data in the map axes. Store the plots in the
CoastlinesPlot, RiversPlot, and CitiesPlot properties, respectively.

function startupFcn(app)
    % Create map axes
    % ...

    % Display land areas
    % ...

    % Display coastlines, rivers, and cities
    rivers = readgeotable("worldrivers.shp");
    cities = readgeotable("worldcities.shp");
    app.CoastlinesPlot = geoplot(app.RightMapAxes,land,EdgeColor="k",FaceColor="none");
    app.RiversPlot = geoplot(app.RightMapAxes,rivers,Color="#0072BD");
    app.CitiesPlot = geoplot(app.RightMapAxes,cities,MarkerEdgeColor="#A2142F");
end

Specify the map projections using projected coordinate reference system (CRS) objects. Create the
objects by using the projcrs function.

1 Add private properties that store the projected CRS objects. In the Editor tab, select Property
and then Private Property. Then, change the property name in the properties block to
EqualEarthProjectedCRS. Repeat this process to add WinkelTripelProjectedCRS and
MercatorProjectedCRS properties.

2 Write code that creates the projected CRS objects when you start the app. In the StartupFcn
callback, add code to create projcrs objects that use the Equal Earth, Winkel Tripel, and
Mercator projections. Store the objects in the EqualEarthProjectedCRS,
WinkelTripelProjectedCRS, and MercatorProjectedCRS properties, respectively.

function startupFcn(app)
    % Create map axes
    % ...

    % Display land areas
    % ...
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    % Display coastlines, rivers, and cities
    % ...

    % Create projected CRSs
    app.EqualEarthProjectedCRS = projcrs(8857);
    app.WinkelTripelProjectedCRS = projcrs(54042,Authority="ESRI");
    app.MercatorProjectedCRS = projcrs(54004,Authority="ESRI");
end

Program Component Behavior
Use Code View to program the behaviors of the radio button group and the check boxes.

1 Write code that changes the projected CRS when you change the radio button selection. In the
Editor tab, click Callback. Then, set Component to MapProjectionButtonGroup and
Callback to SelectionChangedFcn. Add code that changes the projected CRS of the map axes
depending on the selected radio button.

function MapProjectionButtonGroupSelectionChanged(app, event)
    % Change projected CRS of map axes based on selected map projection
    selectedButton = app.MapProjectionButtonGroup.SelectedObject;
    if selectedButton == app.EqualEarthButton % equal earth
        app.RightMapAxes.ProjectedCRS = app.EqualEarthProjectedCRS;
    elseif selectedButton == app.WinkelTripelButton % winkel tripel
        app.RightMapAxes.ProjectedCRS = app.WinkelTripelProjectedCRS;
    elseif selectedButton == app.MercatorButton % mercator
        app.RightMapAxes.ProjectedCRS = app.MercatorProjectedCRS;
    end
end

2 Write code that toggles that visibility of the plots when you check or uncheck the check boxes. In
the Editor tab, click Callback. Then, set Component to CoastlinesCheckBox and Callback
to ValueChangedFcn. Add code that changes the visibility of the coastlines plot depending on
the value of the check box.

function CoastlinesCheckBoxValueChanged(app, event)
    % Change visibility of coastlines plot based on check box
    value = app.CoastlinesCheckBox.Value;
    app.CoastlinesPlot.Visible = value;
end

Repeat this step to add ValueChangedFcn callbacks to the rivers check box, RiversCheckBox,
and cities check box, CitiesCheckBox.

Run the App
To save and run the app, in the Editor tab, click Run. Change the map projection by clicking the
radio buttons. Toggle the visibility of the coastlines, rivers, and cities by clicking the check boxes.

Example: App That Contains Map Axes

This app plots world coastlines, rivers, and cities into a map axes. Radio buttons enable you to change
the map projection. Check boxes enable you to toggle the visibility of the plotted data.
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See Also
Functions
mapaxes | readgeotable | geoplot

Related Examples
• “Create and Run a Simple App Using App Designer”
• “App Building Components”
• “Manage Code in App Designer Code View”
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axesm-Based Maps
When you create a map, you can use one of the Mapping Toolbox built-in user interfaces (UIs), or you
can build the graphic with MATLAB and Mapping Toolbox functions. Many MATLAB graphics are built
using the axes function:

axes
axes('PropertyName',PropertyValue,...)
axes(h)
h = axes(...)

Mapping Toolbox functions include an extended version of the axes function, called the axesm
function. Maps created with the axesm function, called axesm-based maps (previously referred to as
map axes) share all properties associated with regular axes, and they include information about the
current coordinate system (map projection), as well as data to define the map grid and its labeling,
the map frame and its limits, scale, and other properties. For complete descriptions of all axesm-
based map properties, see the axesm-Based Map Properties reference page.

The syntax of axesm is similar to that of axes:

axesm
axesm(PropertyName,PropertyValue,...)
axesm(ProjectionFcn,PropertyName,PropertyValue,...)

The axesm function without arguments brings up a UI that lists all supported projections and assists
in defining their parameters. You can also summon this UI with the axesmui function once you have
created an axesm-based map.

The figure window created using axesm contains the same set of tools and menus as any MATLAB
figure. By default, the figure window is blank, even if there is map data in your workspace. You can
toggle certain properties, such as grids, frames, and axis labels, by right-clicking in the figure window
to obtain a pop-up menu.

Most axesm-based map functions are similar to MATLAB plotting functions, except they accept data
with geographic/geodetic coordinates (latitudes and longitudes) instead of Cartesian and polar
coordinates. axesm-based map functions typically have the same names as their MATLAB
counterparts, with the addition of an 'm' suffix (for maps). For example, the axesm-based map
analog to the plot function is plotm.

axesm-based maps manage most of the details in displaying a map. They project your data, cut and
trim the data to specified limits, and display the maps at various scales. With the toolbox you can also
add customary cartographic elements, such as a frame, grid lines, coordinate labels, and text labels,
to your displayed map. If you change your projection properties, or even the projection itself, some
map displays are automatically redrawn with the new settings, undoing any cuts or trims if necessary.

Note In its current implementation, the toolbox maintains the map projection and display properties
by storing special data in the UserData property of the axesm-based map. The toolbox also takes
over the UserData property of objects projected on axesm-based maps. Therefore, never attempt to
set the UserData property of an axesm-based map or an object projected onto an axesm-based map.
Do not apply the MATLAB get function to axes UserData, depend on the contents of UserData in
any way, or apply functions that set or get UserData to the axesm-based map or the objects mapped
on an axesm-based map. Only use the getm and setm to obtain and modify the properties of axesm-
based maps.
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Tips to Working with axesm-Based Maps
• You can list all the names, classes, and IDs of map projections supported by axesm-based maps

with the maps function.
• You can place many types of objects in an axesm-based map, such as lines, patches, markers,

scale rulers, north arrows, grids, and text. You can use the handlem function and its associated UI
to list these objects. See the handlem reference page for a list of the objects that can occupy an
axesm-based map and how to query for them.

• You can define multiple independent figures containing axesm-based maps, but only one can be
active at any one time. Use axes(obj) to activate an existing axesm-based map.

• axesm-based maps created by axesm contain projection information in a structure. For an
example of what these properties are, type

h = axesm('MapProjection','mercator')

and then use the getm function to retrieve all the axesm-based map properties:

p = getm(h)

See Also
axesm | axesmui | handlem

4 Creating and Viewing Maps

4-24



Create Maps of World and US Regions
This topic shows how to create maps of world regions and maps of regions in the United States by
using the worldmap and usamap functions. Each function creates an axesm-based map and then
automatically selects the projection, limits, and other properties based on the region you specify.

Optionally, after you set up a map using the worldmap or usamap function, you can customize the
map by using the setm function.

Create Maps of World Regions

Create a map of a world region by using the worldmap function.

Create a map of South America. The worldmap function creates an axesm-based map and picks an
appropriate map projection.

figure
worldmap("South America")

Find the map projection by querying the MapProjection property of the axesm-based map. The
result 'eqdconic' means that the map uses an Equidistant Conic projection.

ax = gca;
getm(ax,"MapProjection")

 Create Maps of World and US Regions

4-25



ans = 
'eqdconic'

Display world land areas, rivers, and cities from shapefiles by using the geoshow function. Use green
for the land areas, blue for the rivers, and black for the cities.

geoshow("landareas.shp","FaceColor",[0.5 0.7 0.5])
geoshow("worldrivers.shp","Color","blue")
geoshow("worldcities.shp","Marker",".","Color","red")

Create Maps of US Regions

Create a map of a region in the United States by using the usamap function. The usamap function
enables you to create maps of the entire United States, the conterminous United States, groups of
states, or a single state.

Create a map of the Chesapeake Bay region. The usamap function creates an axesm-based map and
picks an appropriate map projection.

figure
usamap([37 40],[-78 -74]);
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Find the map projection by querying the MapProjection property of the axesm-based map. The
result 'lambert' means that the map uses a Lambert Conformal Conic projection, which is often
used for maps of the conterminous United States.

ax = gca;
getm(ax,"MapProjection")

ans = 
'lambert'

Read a shapefile of US states into the workspace. The function returns the data in a geospatial table.

states = readgeotable("usastatehi.shp");

Define the colors of the states by creating a symbol specification. Create a colormap of random,
muted colors by using the polcmap function.

h = height(states);
faceColors = makesymbolspec('Polygon',{'INDEX',[1 h],'FaceColor',polcmap(h)});

Display the US states by using the geoshow function. Specify the color of each state using the symbol
specification.

geoshow(states,"SymbolSpec",faceColors)
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Add text labels to the map by using the textm function. Get the latitudes, longitudes, and state
names from the geospatial table.

lat = states.LabelLat;
lon = states.LabelLon;
name = states.Name;
textm(lat,lon,name,"HorizontalAlignment","center")
textm(38.2,-76.1," Chesapeake Bay ","FontWeight","bold","Rotation",270)
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See Also
Functions
worldmap | usamap | setm | geoshow

Properties
axesm-Based Map Properties
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Switch Between Projections
Once you create an axesm-based map, whether map data is displayed or not, it is possible to change
the current projection as well as many of its parameters. Use setm to reset the projection. The rest of
this section describes the considerations and parameters involved in switching projections in an
axesm-based map. Additional details are given for doing this with the geoshow function in “Change
Map Projections Using geoshow” on page 4-40.

When you switch from one projection to another, setm clears out settings that were specific to the
earlier projection, updates the map frame and graticule, and generally keeps the map covering the
same part of the world—even when switching between azimuthal and non-azimuthal projections. But
in some cases, you might need to further adjust the axesm-based map properties to achieve proper
appearance. Settings that are suitable for one projection might not be appropriate for another. Most
often, you'll need to update the positioning of your meridian and parallel labels.

Change Projection Updating Meridian and Parallel Labels

This example shows how to change the projection of an axesm-based map and update the meridian
and parallel labels.

Create a Mercator projection with meridian and parallel labels.

axesm mercator
framem on; gridm on; mlabel on; plabel on
setm(gca,'LabelFormat','signed')
axis off
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Get the default map and frame latitude limits for the Mercator projection. Note that both the frame
and map latitude limits are set to 86 degrees north and south for the Mercator projection to maintain
a safe distance from the singularity at the poles.

[getm(gca,'MapLatLimit'); getm(gca,'FLatLimit')]

ans = 2×2

   -86    86
   -86    86

Switch the projection to an orthographic azimuthal.

setm(gca,'MapProjection','ortho')
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Specify new locations for the meridian and parallel labels.

setm(gca,'MLabelParallel',0,'PLabelMeridian',-90, ...
   'PLabelMeridian',-30)
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Change Projection Resetting Frame Limits

This example shows how to switch from one projection to another in an axesm-based map and reset
the origin and frame limits, especially when mapping a small portion of the Earth.

Create an axesm-based map for a region of the United States in the Lambert Conformal Conic
projection (the default projection for the usamap function).

latlim = [32 42];
lonlim = [-125 -111];
h = usamap(latlim, lonlim);
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Read the usastatehi shapefile and return a subset of the shapefile contents, as defined by the
latitude and longitude limits. The shaperead function returns the data in a structure called states .

states = shaperead('usastatehi.shp', 'UseGeoCoords', true, ...
   'BoundingBox', [lonlim', latlim']);

Save the latitude and longitude data from the structure in the vectors lat and lon .

lat = [states.Lat];
lon = [states.Lon];

Project patch objects on the map.

patchm(lat, lon, [0.5 0.5 1])
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Change the projection to Lambert Equal Area Azimuthal and reset the origin and frame limits.

setm(gca,'MapProjection','eqaazim','Origin',[37 -118], ...
   'FLatLimit',[-Inf 6]) 
setm(gca,'mlinelocation',2,'plinelocation',2)
tightmap

 Switch Between Projections

4-35



4 Creating and Viewing Maps

4-36



Reprojection of Graphics Objects
Many Mapping Toolbox cartographic functions project features on an axesm-based map based on
their designated latitude-longitude positions. The latitudes and longitudes are mathematically
transformed to x and y positions using the formulas for the current map projection. If the map
projection or its parameters change, objects on an axesm-based map can be automatically
reprojected to update the map display accordingly.

The table summarizes the four common use cases for changing a map projection in an axesm-based
map with setm or for reprojecting map data plotted on a regular MATLAB axes.

Mapping Use Case Type of Axes Reprojection Behavior
Plot geographic (latitude-longitude)
vector coordinate data or data grid
using a Mapping Toolbox function from
releases prior to Version 2 (e.g.,
plotm)

axesm-based
map

Automatic reprojection

Plot geographic vector data with
geoshow

axesm-based
map

No automatic reprojection; delete
graphics objects prior to changing the
projection and redraw them afterwards.

Plot data grids, images, and contours
with geographic coordinates with
geoshow

axesm-based
map

Automatic reprojection; this behavior
could change in a future release

Plot projected (x-y) vector or raster
map data with mapshow or with a
MATLAB graphics function (e.g., line,
contour, or surf)

Regular axes Manual reprojection (reproject
coordinates with projinv/projfwd);
delete graphics objects prior to changing
the projection and redraw them
afterwards.

You can use handlem to help identify which objects to delete when manual deletion is necessary. See
“Work with Objects by Name” on page 4-100 for an example of its use.

Auto-Reprojection of Mapped Objects and Its Limitations
Using the setm function, you can change the current map projection on the fly if the map display was
created in a way that permits reprojection. Note that map displays can contain objects that cannot be
reprojected, and may need to be explicitly deleted and redrawn. Automatic reprojection will take
place when you use setm to modify the MapProjection property, or any other axesm-based map
property from the following list:

• AngleUnits
• Aspect
• FalseEasting
• FalseNorthing
• FLatLimit
• FLonLimit
• Geoid
• MapLatLimit
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• MapLonLimit
• MapParallels
• Origin
• ScaleFactor
• TrimLat
• TrimLon
• Zone

Auto-reprojection takes place for objects created with any of the following Mapping Toolbox
functions:

• contourm
• contour3m
• fillm
• fill3m
• gridm
• linem
• meshm
• patchm
• plotm
• plot3m
• surfm
• surfacem
• textm

The above Mapping Toolbox functions are analogous to standard MATLAB graphics functions having
the same name, less the trailing m. You can use both types of functions to plot data on an axesm-
based map, as long as you are aware that the standard MATLAB graphics functions do not apply map
projection transformations, and therefore require you to specify positions in map x-y space.

In general, objects created with geoshow or with a combination of calls to projfwd followed by
ordinary MATLAB graphics functions, such as line, patch, or surface, are not automatically
reprojected. You should delete such objects whenever you change one or more of the axesm-based
map properties listed above, and then redisplay them.

If you have preprojected vector or raster map data or read such data from files, you can display it
with mapshow or standard MATLAB graphics functions, such as plot or mesh. If its projection is
known and is included in the Mapping Toolbox projection libraries, you can use its parameters to
project geodata in geographic coordinates to display it in the same axes.

Reprojectability of Maps Generated Using geoshow
If you want to be able to change the projection of a map on the fly, you should not use geoshow.
Some display functions, such as patchm , fillm, displaym, and linem, enable you to reproject
vector map data, but geoshow does not. That is, when you change an axesm-based map projection,
with setm for example, vector map symbology that was created with geoshow will not be
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transformed. Gridded data rendered with geoshow (when DisplayType is surface, texturemap,
or contour), however, can be reprojected.

For examples of reprojection behavior with vector data and raster data, see “Change Map Projections
Using geoshow” on page 4-40.
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Change Map Projections Using geoshow
You can display latitude-longitude vector and raster geodata using the geoshow function (use
mapshow to display preprojected coordinates and grids). When you use geoshow to display maps on
an axesm-based map, the data are projected according to the map projection assigned when axesm,
worldmap, or usamap created the map (e.g., axesm('mapprojection','mercator')).

You can also use geoshow to display latitude-longitude data on a regular axes (created by the axes
function, for example). When you do this, the latitude-longitude data are displayed using a pcarree,
which linearly maps longitude to x and latitude to y.

Change Map Projection with Vector Data Using geoshow

This example shows how to change a map projection when displaying vector data using geoshow . If
you need to change projections when displaying both raster and vector geodata, you can combine
these techniques. Removing vector graphic objects does not affect raster data already displayed.

Display vector data using geoshow.

figure; 
axesm miller
h = geoshow('landareas.shp');

Delete the original map and change the projection.
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delete(h)
setm(gca,'mapprojection','ortho')
geoshow('landareas.shp')

Change Map Projection with Raster Data Using geoshow

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Then,
display the data using a Mercator projection.

[N,R] = egm96geoid;
axesm mercator
geoshow(N,R,'DisplayType','surface')
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Change the projection using the setm function.

setm(gca,'mapprojection','mollweid')
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See Also

Related Examples
• “Summary and Guide to Projections” on page 8-45
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Summary of Polygon Display Functions
The following table lists the available Mapping Toolbox patch and polygon display functions.

Function Used For
geoplot Plot 2-D points, lines, and polygons on map axes and geographic axes
geoshow Display map latitude and longitude data in 2-D on axesm-based maps
mapshow Display map data without projection in 2-D on axes
patchm Patch objects projected on axesm-based maps
patchesm Patches projected as individual objects on axesm-based maps
fillm Filled 2-D map patches on axesm-based maps
fill3m Filled 3-D map patches in 3-D space on axesm-based maps

geoplot
The geoplot function displays point, line, and polygon data on map axes and geographic axes. This
function accepts geospatial tables and shape objects in any supported projected or geographic
coordinate reference system (CRS), and accepts coordinate vectors in geographic coordinates. Unlike
the other functions listed on this page, the geoplot function creates a Polygon object when you
display polygon data.

geoshow and mapshow
The geoshow and mapshow functions provide a superset of functionality for displaying geographic
(latitude-longitude) and projected (xy) geospatial data, respectively, in two dimensions. These
functions accept geospatial tables, geographic data structures (geostructs and mapstructs), and
coordinate vector arrays, but can also directly read shapefiles and spatially referenced raster files. To
control how MATLAB renders the data, create symbol specifications by using the makesymbolspec
function.

patchm, patchesm, fillm, and fill3m
Mapping Toolbox provides two low-level functions that display patches on axesm-based maps:
patchm and patchesm. The patchm function creates one displayed object that can contain multiple
unconnected faces. Unlike MATLAB patch display functions, which do not support unconnected patch
faces, patchm separates unconnected faces using NaN values. Alternatively, the patchesm function
treats each face as a separate object and returns an array of patch objects. In general, patchm
requires more memory but is faster than patchesm. The patchesm function is useful if you need to
manipulate the appearance of individual patches (as thematic maps often require).

The fillm and fill3m functions make use of the patchm function.

See Also
Properties
Patch Properties | Polygon Properties
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More About
• “Choose a 2-D Map Display” on page 4-2
• “Create and Display Polygons” on page 2-8
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Display Vector Data as Points and Lines

Display vector data on maps as points and lines.

This page shows how to create similar maps using map axes (since R2023a) and axesm-based maps.
For a comparison of map axes and axesm-based maps, including when to use each type of display, see
“Choose a 2-D Map Display” on page 4-2.

Prepare Data

Prepare data to use in the examples.

Load a MAT-file containing the coordinates of global coastlines into the workspace. The variables
within the MAT-file, coastlat and coastlon, specify numeric latitude and longitude coordinates.
Remove the South Pole by clipping the line data.

load coastlines
coast = geolineshape(coastlat,coastlon);
coast = geoclip(coast,[-89 90],[-180 180]);

Specify the locations of three cities (Cairo, Rio de Janeiro, and Perth).

citylat = [30 -23 -32]; 
citylon = [32 -43 116];

Find the coordinates of two tracks:

• A great circle track from Cairo to Rio de Janeiro
• A rhumb line track from Cairo to Perth

[gclat,gclon] = track2("gc",citylat(1),citylon(1),citylat(2),citylon(2));
[rhlat,rhlon] = track2("rh",citylat(1),citylon(1),citylat(3),citylon(3));

Create Map Using Map Axes

Display vector data on a map axes object as points and lines.

Set up a map that uses a Mollweide projection. Create the projected coordinate reference system
(CRS) using the ESRI code 54009.

figure
proj = projcrs(54009,Authority="ESRI");
mx = newmap(proj);
hold on
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Display the global coastlines by using the geoplot function. Specify the line color as gray.

geoplot(coast,Color=[0.4 0.4 0.4])

Display the great circle track from Cairo to Rio de Janeiro using a thick line.

geoplot(gclat,gclon,LineWidth=2)

Display the rhumb line track from Cairo to Perth using a thick, dashed line.

geoplot(rhlat,rhlon,"--",LineWidth=2)

Display the locations of the cities by using the geoscatter function.

geoscatter(citylat,citylon,"filled")
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Create Map Using axesm-Based Map

Display vector data on an axesm-based map as points and lines.

Set up a map that uses a Mollweide projection. Change the color of the frame to gray. Make the line
width of the frame thinner.

figure
axesm mollweid
framem("FEdgeColor",[0.4 0.4 0.4],"FLineWidth",0.5)
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Display the global coastlines by using the plotm function. Specify the line color as gray.

plotm(coastlat,coastlon,"Color",[0.4 0.4 0.4])

Display the great circle track from Cairo to Rio de Janeiro using a thick line.

plotm(gclat,gclon,"LineWidth",2)

Display the rhumb line track from Cairo to Perth using a thick, dashed line.

plotm(rhlat,rhlon,"--","LineWidth",2)

Display the locations of the cities by using the scatterm function.

scatterm(citylat,citylon,"r","filled")

 Display Vector Data as Points and Lines

4-49



Alternatively, you can plot geographic data over axesm-based maps by using the geoshow function.

Tips

To plot data that is already in projected coordinates, use a regular axes object and the mapshow
function.

See Also
Functions
newmap | axesm

Properties
MapAxes Properties | axesm-Based Map Properties

Related Examples
• “Display Vector Data as Lines and Patches” on page 4-51
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Display Vector Data as Lines and Patches

Display vector data on maps as lines and patches (filled polygons).

This page shows how to create similar maps using map axes (since R2023a) and axesm-based maps.
For a comparison of map axes and axesm-based maps, including when to use each type of display, see
“Choose a 2-D Map Display” on page 4-2.

Prepare Data

Prepare the data to use in the examples.

Load a MAT file containing the latitude and longitude coordinates of several polygons and lines. The
data separates individual polygons and lines using NaN values.

• uslat and uslon — Polygons representing the conterminous United States.
• gtlakelat and gtlakelon — Polygons representing the Great Lakes.
• statelat and statelon — Lines representing the borders between states.

load conus

Use the data to create polygon and line shapes. Combine the shapes into a geospatial table.

us = geopolyshape(uslat,uslon);
gtlake = geopolyshape(gtlakelat,gtlakelon);
states = geolineshape(statelat,statelon);
conusGT = table([us; gtlake; states],VariableNames="Shape")

conusGT=3×1 table
       Shape    
    ____________

    geopolyshape
    geopolyshape
    geolineshape

Read a shapefile containing world rivers into a geospatial table. The table represents the rivers using
line shapes in geographic coordinates. Clip the line shapes to a region that covers the conterminous
United States.

riversGT = readgeotable("worldrivers.shp");

uslatlim = [min(uslat) max(uslat)];
uslonlim = [min(uslon) max(uslon)];
clipped = geoclip(riversGT.Shape,uslatlim,uslonlim);
riversGT.Shape = clipped;

Create Map Using Map Axes

Display vector data on a map axes object as lines and polygons.

Set up a map using a projected coordinate reference system (CRS) that is appropriate for the
conterminous United States. Create the projected CRS using the ESRI code 102003.
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figure
proj = projcrs(102003,Authority="ESRI");
newmap(proj)
hold on

Display the data on the map by using the geoplot function.

• Display the conterminous United States using green polygons.
• Display the Great Lakes using opaque, light blue polygons.
• Display the state boundaries using black lines.
• Display the rivers using blue lines.

geoplot(conusGT(1,:),FaceColor=[0.4660 0.6740 0.1880])
geoplot(conusGT(2,:),FaceAlpha=1,FaceColor=[0.3010 0.7450 0.9330])
geoplot(conusGT(3,:),Color="k")
geoplot(riversGT,Color=[0 0.4470 0.7410])

Create Map Using axesm-Based Maps

Display vector data on an axesm-based map as lines and patches.

Set up an axesm-based map to display the state coordinates, turning on the map frame, map grid,
and the meridian and parallel labels. Create the map using an Albers Equal Area Conic projection.
Specifying map limits that contain the region of interest automatically centers the projection on an
appropriate longitude. The frame encloses just the mapping area, not the entire globe. As a general
rule, you should specify map limits that extend slightly outside your area of interest (worldmap and

4 Creating and Viewing Maps

4-52



usamap do this for you). Conic projections need two standard parallels (latitudes at which scale
distortion is zero). A good rule is to set the standard parallels at one-sixth of the way from both
latitude extremes. Or, to use default latitudes for the standard parallels, simply provide an empty
matrix in the call to axesm .

figure
axesm("MapProjection","eqaconic","MapParallels",[], ...
      "MapLatLimit",uslatlim + [-2 2], ...
      "MapLonLimit",uslonlim + [-2 2])
axis off 
framem 
gridm 
mlabel 
plabel

Display the data on the map by using the geoshow function.

• Display the conterminous United States using green patches.
• Display the Great Lakes using light blue patches.
• Display the state boundaries using black lines.
• Display the rivers using blue lines.

geoshow(conusGT(1,:),"FaceColor",[0.8157 0.8863 0.7176])
geoshow(conusGT(2,:),"FaceColor",[0.3010 0.7450 0.9330])
geoshow(conusGT(3,:),"Color","k")
geoshow(riversGT,"Color",[0 0.4470 0.7410])
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Tips

To plot data that is already in projected coordinates, use a regular axes object and the mapshow
function.

See Also
Functions
axesm | geoclip | geoshow | mapshow | geoplot

Properties
axesm-Based Map Properties

More About
• “Create and Display Polygons” on page 2-8
• “Display Vector Data as Points and Lines” on page 4-46
• “Create Map of Quadrangle Using Cartographic Map Layout” on page 6-19
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Types of Data Grids and Raster Display Functions
Mapping Toolbox functions and GUIs display both regular and geolocated data grids originating in a
variety of formats. Recall that regular data grids require a referencing vector or matrix that describes
the sampling and location of the data points, while geolocated data grids require matrices of latitude
and longitude coordinates.

The data grid display functions are geographic analogies to the MATLAB surface drawing functions,
but operate specifically on axesm-based maps. Like the line-plotting functions discussed in the
previous chapter, some Mapping Toolbox grid function names correspond to their MATLAB
counterparts with an m appended.

Note Mapping Toolbox functions beginning with mesh are used for regular data grids, while those
beginning with surf are reserved for geolocated data grids. This usage differs from the MATLAB
definition; mesh plots are used for colored wire-frame views of the surface, while surf displays
colored faceted surfaces.

Surface map objects can be displayed in a variety of different ways. You can assign colors from the
figure colormap to surfaces according to the values of their data. You can also display images where
the matrix data consists of indices into a colormap or display the matrix as a three-dimensional
surface, with the z-coordinates given by the map matrix. You can use monochrome surfaces that
reflect a pseudo-light source, thereby producing a three-dimensional, shaded relief model of the
surface. Finally, you can use a combination of color and light shading to create a lighted shaded relief
map.

The following table lists the available Mapping Toolbox surface map display functions.

Function Used For
geoshow Display map latitude and longitude data in 2-D
mapshow Display map data without projection in 2-D
meshm Project regular data grid on axesm-based map
surfm Project geolocated data grid on axesm-based map
pcolorm Project regular data grid in z = 0 plane on axesm-based map
surfacem Project and add geolocated data grid to axesm-based map
surflm 3-D shaded surface with lighting on axesm-based map
meshlsrm 3-D lighted shaded relief of regular data grid on axesm-based map
surflsrm 3-D lighted shaded relief of geolocated data grid on axesm-based map
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Fit Gridded Data to the Graticule
The toolbox projects surface objects in a manner similar to the traditional methods of map making. A
cartographer first lays out a grid of meridians and parallels called the graticule. Each graticule cell is
a geographic quadrangle. The cartographer calculates or interpolates the appropriate x-y locations
for every vertex in the graticule grid and draws the projected graticule by connecting the dots.
Finally, the cartographer draws the map data freehand, attempting to account for the shape of the
graticule cells, which usually change shape across the map. Similarly, the toolbox calculates the x-y
locations of the four vertices of each graticule cell and warps or samples the matrix data to fit the
resulting quadrilateral.

In mapping data grids using the toolbox, as in traditional cartography, the finer the mesh (analogous
to using a graticule with more meridians and parallels), the greater precision the projected map
display will have, at the cost of greater effort and time. The graticule in a printed map is analogous to
the spacing of grid elements in a regular data grid, the Mapping Toolbox representation of which is
two-element vectors of the form [number-of-parallels, number-of-meridians]. The graticule
for geolocated data grids is similar; it is the size of the latitude and longitude coordinate matrices:
number-of-parallels = mrows-1 and number-of-meridians = ncols-1. However, because
geolocated data grids have arbitrary cell corner locations, spacing can vary and thus their graticule is
not a regular mesh.

Fit Gridded Data to Fine and Coarse Graticules

This example shows how to fit gridded data to fine and coarse graticules. The choice of graticule is a
balance of speed over precision in terms of positioning the grid on the map. Typically, there is no
point to specifying a mesh finer than the data resolution (in this example, 180-by-360 grid cells). In
practice, it makes sense to use coarse graticules for development tasks and fine graticules for final
graphics production.

Note that, regardless of the graticule resolution, the grid data is unchanged. In this case, the data
grid is a 180-by-360 matrix, and regardless of where it is positioned, the data values are unchanged.

Load elevation raster data and a geographic cells reference object.

load topo60c

Set up a Robinson projection, specify a coarse (10-by-20) cell graticule, and display the data mapped
to the graticule using a colormap appropriate for elevation data. Notice that for this coarse graticule,
the edges of the map do not appear as smooth curves.

figure
axesm robinson
spacing = [10 20];
m = meshm(topo60c,topo60cR,spacing);
demcmap(topo60c)
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Now reset the graticule, using the setm function, to make it less coarse, [50 100]. Notice that the
jagged edges effect is now negligible.

setm(m,'MeshGrat',[50 100])
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Reset the graticule again, this time to a very fine grid using the setm function. Notice that the result
does not appear to be any better than the original display with the default [50 100] graticule, but it
took much longer to produce. Making the mesh more precise is a trade-off of resolution versus time
and memory usage.

setm(m,'MeshGrat',[200 400])
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Create 3-D Displays with Raster Data
This example shows how to create a 3-D display of raster data on an axesm-based map by setting up
surface views, which requires explicit horizontal coordinates. The simplest way to display raster data
is to assign colors to matrix elements according to their data values and view them in two
dimensions. Raster data maps also can be displayed as 3-D surfaces using the matrix values as the z
data. The difference between regular raster data and a geolocated data grid is that each grid
intersection for a geolocated grid is explicitly defined with x-y or latitude/longitude matrices or is
interpolated from a graticule, while a regular matrix only implies these locations (which is why it
needs a reference object).

Display Elevation Data in 3-D

Load elevation data and a geographic cells reference object for the Korean peninsula. Transform the
data and reference object to a fully geolocated data grid using the geographicGrid function.

load korea5c
[lat,lon] = geographicGrid(korea5cR);

Next use the km2deg function to convert the units of elevation from meters to degrees, so they are
commensurate with the latitude and longitude coordinate matrices.

korea5c = km2deg(korea5c/1000);

Observe the results by typing the whos command. The lat and lon coordinate matrices form a mesh
the same size as korea5c. This is a requirement for constructing 3-D surfaces. In lon, all columns
contain the same number for a given row, and in lat, all rows contain the same number for a given
column.

whos

  Name               Size              Bytes  Class                                     Attributes

  description        2x64                256  char                                                
  korea5c          180x240            345600  double                                              
  korea5cR           1x1                 128  map.rasterref.GeographicCellsReference              
  lat              180x240            345600  double                                              
  lon              180x240            345600  double                                              
  source             2x76                304  char                                                

Now set up an axesm-based map with the equal area conic projection and, instead of using the meshm
function to make this map, display the geolocated data grid using the surfm function. Set an
appropriate colormap. This produces a map that is really a 3-D view seen from directly overhead (the
default perspective). To appreciate that, all you need to do is to change your viewpoint.

axesm('MapProjection','eqaconic','MapParallels',[],...
     'MapLatLimit',[30 45],'MapLonLimit',[115 135])
surfm(lat,lon,korea5c,korea5c)
demcmap(korea5c)
tightmap
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Specify a viewing azimuth of 60 degrees (from the east southeast) and a viewing elevation of 30
degrees above the horizon, using the view function.

view(60,30)
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See Also
Functions
geographicGrid | surfm | axesm

Objects
GeographicCellsReference
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Create Map Displays with Geographic Data

There are many geospatial data sets that contain data with coordinates in latitude and longitude in
units of degrees. This example illustrates how to import geographic data with coordinates in latitude
and longitude, display geographic data in a map display, and customize the display.

In particular, this example illustrates how to

• Import specific geographic vector and raster data sets
• Create map displays and visualize the data
• Display multiple data sets in a single map display
• Customize a map display with a scale ruler and north arrow
• Customize a map display with an inset map

Example 1: Import Polygon Geographic Vector Data

Geographic vector data can be stored in a variety of different formats, for example shapefile and GPS
Exchange (GPX) formats. This example imports polygon geographic vector data from a shapefile.
Vertices in a shapefile can be either in geographic coordinates (latitude and longitude) or in a
projected coordinate reference system.

Read USA state boundaries from the usastatehi.shp file included with the Mapping Toolbox™
software. The state boundaries are in latitude and longitude.

states = shaperead('usastatehi.shp','UseGeoCoords',true);

Example 2: Display Polygon Geographic Vector Data

Display the polygon geographic vector data onto an axesm-based map (previously referred to as map
axes). Since the geographic extent is in the United States, you can use usamap to set up the map. Use
geoshow to project and display the geographic data onto the map. Display an ocean color in the
background by setting the frame's face color.

figure
ax = usamap('conus');
oceanColor = [0.3010 0.7450 0.9330];
landColor = [0.9290 0.6940 0.1250];
setm(ax,'FFaceColor',oceanColor)
geoshow(states,'FaceColor',landColor)
title({'Conterminous USA State Boundaries', ...
    'Polygon Geographic Vector Data'})
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Example 3: Import Point and Line Geographic Vector Data

Import point geographic vector data from the boston_placenames.gpx file included with the
Mapping Toolbox™ software. The file contains latitude and longitude coordinates of geographic point
features in part of Boston, Massachusetts, USA. Use the readgeotable function to read the GPX file
and return a geospatial table with one row for each point and its attributes.

placenames = readgeotable('boston_placenames.gpx');

Import line vector data from the sample_route.gpx file included with the Mapping Toolbox™
software. The file contains latitude and longitude coordinates for a GPS route from Boston Logan
International Airport to The MathWorks, Inc in Natick Massachusetts, USA. Use the readgeotable
function to read the GPX file and return a geospatial table contains each point along the route.

route = readgeotable('sample_route.gpx');

Example 4: Display Point and Line Geographic Vector Data

Display the geographic vector data in an axesm-based map centered around the state of
Massachusetts, using the data from the state boundaries and the GPX files. The coordinates for all of
these data sets are in latitude and longitude.

Find the state boundary for Massachusetts.

stateName = 'Massachusetts';
ma = states(strcmp({states.Name},stateName));
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Use usamap to setup a map for the region surrounding Massachusetts. Color the ocean by setting the
frame's face color. Display the state boundaries and highlight Massachusetts by using geoshow to
display the geographic data onto the map. Since the GPX route is a set of points stored in a
geopointshape vector, supply the latitude and longitude coordinates to geoshow to display the
route as a line.

figure
ax = usamap('ma');
maColor = [0.4660 0.6740 0.1880];
setm(ax,'FFaceColor',oceanColor)
geoshow(states,'FaceColor',landColor)
geoshow(ma,'FaceColor',maColor)
geoshow(placenames);
geoshow(route.Shape.Latitude,route.Shape.Longitude);
title({'Massachusetts and Surrounding Region','Placenames and Route'})

Example 5: Set Latitude and Longitude Limits Based on Data Extent

Zoom into the map by computing new latitude and longitude limits for the map using the extent of the
placenames and route data. Extend the limits by 0.05 degrees.

lat = [route.Shape.Latitude; placenames.Shape.Latitude];
lon = [route.Shape.Longitude; placenames.Shape.Longitude];
[latlim,lonlim] = geoquadpt(lat,lon);
[latlim,lonlim] = bufgeoquad(latlim,lonlim,0.05,0.05);

Construct an axesm-based map with the new limits and display the geographic data.
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figure
ax = usamap(latlim,lonlim);
setm(ax,'FFaceColor',oceanColor)
geoshow(ma,'FaceColor',maColor)
geoshow(placenames)
geoshow(route.Shape.Latitude,route.Shape.Longitude)
title('Closeup of Placenames and Route')

Example 6: Import Geographic Raster Data

Geographic raster data can be stored in a variety of different formats, for example GeoTIFF, Esri
Grid, DTED, and ENVI formats. To read data in these formats, use the readgeoraster function.

To read an image associated with a worldfile, use the imread and worldfileread functions instead.
Use imread to read the image and worldfileread to read the worldfile and construct a spatial
referencing object. For this example, import data for the region surrounding Boston, Massachusetts.
The coordinates of the image are in latitude and longitude.

filename = 'boston_ovr.jpg';
RGB = imread(filename);
R = worldfileread(getworldfilename(filename),'geographic',size(RGB));

Example 7: Display Geographic Raster Data

Display the RGB image onto an axesm-based map. The limits of the map are set to the limits defined
by the spatial referencing object, R. The coordinates of the data are in latitude and longitude.
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figure
ax = usamap(RGB,R);
setm(ax,'MLabelLocation',0.05,'PLabelLocation',0.05, ...
    'MLabelRound',-2,'PLabelRound',-2)
geoshow(RGB,R)
title('Boston Overview')

Example 8: Display Geographic Vector and Raster Data

You can display raster and vector data in a single map display. Since the coordinates for all of these
data sets are in latitude and longitude, use geoshow to display them in a single map display. Setup
new limits based on the limits of the route, placenames, and the overview image.

lat = [route.Shape.Latitude'  placenames.Shape.Latitude'  R.LatitudeLimits];
lon = [route.Shape.Longitude' placenames.Shape.Longitude' R.LongitudeLimits];
[latlim,lonlim] = geoquadpt(lat,lon);

figure
ax = usamap(latlim,lonlim);
setm(ax,'GColor','k','PLabelLocation',0.05,'PLineLocation',0.05)
geoshow(RGB,R)
geoshow(ma.Lat,ma.Lon,'LineWidth',2,'Color','y')
geoshow(placenames)
geoshow(route.Shape.Latitude,route.Shape.Longitude)
title('Boston Overview and Geographic Vector Data')
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Example 9: Customize a Map Display with a Scale Ruler

Customize a map display by including a scale ruler. A scale ruler is a graphic object that shows
distances on the ground at the correct size for the projection. This example illustrates how to
construct a scale ruler that displays horizontal distances in international miles.

Compute latitude and longitude limits of Massachusetts and extend the limits by 0.05 degrees by
using the bufgeoquad function.

[latlim,lonlim] = geoquadline(ma.Lat,ma.Lon);
[latlim,lonlim] = bufgeoquad(latlim,lonlim,0.05,0.05);

Display the state boundary, placenames, route, and overview image onto the map.

figure
ax = usamap(latlim,lonlim);
setm(ax,'FFaceColor',oceanColor)
geoshow(states,'FaceColor',landColor)
geoshow(ma,'LineWidth',1.5,'FaceColor',maColor)
geoshow(RGB,R)
geoshow(placenames)
geoshow(route.Shape.Latitude,route.Shape.Longitude)
titleText = 'Massachusetts and Surrounding Region';
title(titleText)
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Insert a scale ruler. You can determine a location for the scale ruler by using the ginput function as
shown below:

[xLoc,yLoc] = ginput(1);

A location previously chosen is set below.

xLoc = -127800;
yLoc = 5014700;
scaleruler('Units','mi','RulerStyle','patches',  ...
    'XLoc',xLoc,'YLoc',yLoc);
title({titleText,'with Scale Ruler'})
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Example 10: Customize a Map Display with a North Arrow

Customize the map by adding a north arrow. A north arrow is a graphic element pointing to the
geographic North Pole.

Use latitude and longitude values to position the north arrow.

northArrowLat =  42.5;
northArrowLon = -70.25;
northarrow('Latitude',northArrowLat,'Longitude',northArrowLon);
title({titleText,'with Scale Ruler and North Arrow'})
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Example 11: Customize a Map Display with an Inset Map

Customize the map by adding an inset map. An inset map is a small map within a larger map that
enables you to visualize the larger geographic region of your main map. Create a map for the
surrounding region as an inset map. Use the axes function to contain and position the inset map. In
the inset map:

• Display the state boundaries for the surrounding region
• Plot a red box to show the extent of the main map

h2 = axes('Position',[0.15 0.6 0.2 0.2],'Visible','off');
usamap({'PA','ME'})
plabel off
mlabel off
setm(h2,'FFaceColor','w')
geoshow(states,'FaceColor',[0.9 0.9 0.9],'Parent',h2)
plotm(latlim([1 2 2 1 1]),lonlim([2 2 1 1 2]), ...
    'Color','red','LineWidth',2)
title(ax,{titleText,'with Scale Ruler, North Arrow, and Inset Map'})
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Data Set Information

The file boston_placenames.gpx is from the Bureau of Geographic Information (MassGIS),
Commonwealth of Massachusetts, Executive Office of Technology and Security Services. For more
information about the data sets, use the command type boston_placenames_gpx.txt.

The file boston_ovr.jpg includes materials copyrighted by GeoEye, all rights reserved. GeoEye was
merged into the DigitalGlobe corporation on January 29th, 2013. For more information about the data
set, use the command type boston_ovr.txt.

See Also
usamap | geoshow | scaleruler | northarrow | geoplot | geoscatter
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Create Maps with Data in Projected Coordinate Reference
Systems

This example illustrates how to import and display geographic data that contain coordinates in a
projected coordinate reference system.

In particular, this example illustrates how to

• Import specific raster and vector data sets
• Create map displays for visualizing the data
• Display multiple data sets in a map display
• Display multiple data sets with coordinates in geographic and projected coordinate reference

systems in a single map display

Example 1: Import Raster Data in Projected Coordinate Reference System

Geographic raster data that contains coordinates in a projected coordinate reference system can be
stored in a variety of different formats, including standard file formats such as GeoTIFF, Spatial Data
Transfer Standard (SDTS), NetCDF, HDF4, or HDF5. This example illustrates importing data from a
GeoTIFF file. The data in the file contains coordinates in the projected map coordinate reference
system Massachusetts State Plane Mainland Zone coordinate system.

The coordinates of the image in the GeoTIFF file, boston.tif, are in a projected coordinate
reference system. You can determine that by using the geotiffinfo function and examine the PCS
and Projection field values.

info = geotiffinfo('boston.tif');
disp(info.PCS)

NAD83 / Massachusetts Mainland

disp(info.Projection)

SPCS83 Massachusetts Mainland zone (meters)

The length unit of the coordinates are defined by the UOMLength field in the info structure.

disp(info.UOMLength)

US survey foot

To import the image and the spatial referencing object, use readgeoraster.

[boston,R] = readgeoraster('boston.tif');

Example 2: Display Raster Data in Projected Coordinate Reference System

You can display the image on a regular MATLAB axes using mapshow, which displays the image and
sets the axes limits to the limits defined by the referencing object, R. The coordinates, as mentioned
above, are in US survey foot and are relative to an origin to the southwest of the map, which is
why the numbers are large. The coordinates are always positive within the zone.
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mapshow(boston,R)
axis image
title('Boston')

Example 3: Import Vector Data in Projected Coordinate Reference System

Geographic vector data that contains coordinates in a projected coordinate reference system can be
stored in shapefiles. This example illustrates how to import vector data in a projected coordinate
reference system from the shapefile, boston_roads.shp.

Import vector line data from the boston_roads.shp file as a geospatial table.

roads = readgeotable('boston_roads.shp');

The Shape variable of the table contains information about the line shapes. Query the projected
coordinate reference system of the shapes.

roads.Shape.ProjectedCRS

ans = 
  projcrs with properties:

                    Name: "NAD83 / Massachusetts Mainland"
           GeographicCRS: [1×1 geocrs]
        ProjectionMethod: "Lambert Conic Conformal (2SP)"
              LengthUnit: "meter"
    ProjectionParameters: [1×1 map.crs.ProjectionParameters]
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Example 4: Display Vector and Raster Data in Projected Coordinate Reference System

The vector and raster data in this example are in the same projected coordinate reference system.
However, the vector data is in length units of meter, while the raster data is in length unit of survey
foot. Convert the raster data to length units of meter and display the data on the same axes.

Convert the coordinates of the raster image from units of US survey foot to meter.

R.XWorldLimits = R.XWorldLimits * unitsratio('m','sf');
R.YWorldLimits = R.YWorldLimits * unitsratio('m','sf');

Display the raster image and vector data using mapshow.

figure
mapshow(boston,R)
mapshow(roads)
title('Boston and Roads')

Example 5: Display Data in both Geographic and Projected Coordinate Reference Systems

You may have geographic data whose coordinates are in latitude and longitude and other data whose
coordinates are in a projected coordinate reference system. You can display these data sets in the
same map display. This example illustrates how to display data in a geographic coordinate reference
system (latitude and longitude) with data in a projected map coordinate reference system
(Massachusetts State Plane Mainland Zone coordinate system).

Read a raster image with a worldfile whose coordinates are in latitude and longitude. Use imread to
read the image and worldfileread to read the worldfile and construct a spatial referencing object.
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filename = 'boston_ovr.jpg';
overview = imread(filename);
overviewR = worldfileread(getworldfilename(filename), 'geographic', size(overview));

To display the overview image and the GeoTIFF image in the same map display, you need to create a
map display using a Mapping Toolbox™ projection structure containing the projection information for
the data in the projected coordinate reference system, Massachusetts State Plane Mainland Zone
coordinate system. To make a map display in this system, you can use the projection information
contained in the GeoTIFF file. Use the geotiff2mstruct function to construct a Mapping Toolbox™
projection structure, from the contents of the GeoTIFF information structure. The geotiff2mstruct
function returns a projection in units of meters. Use the projection structure to define the projection
parameters for the map display.

mstruct = geotiff2mstruct(info);

Use the latitude and longitude limits of the Boston overview image.

latlim = overviewR.LatitudeLimits;
lonlim = overviewR.LongitudeLimits;

Create an axesm-based map by using the projection information stored in the map projection
structure and set the map latitude and longitude limits. Display the geographic data in the map.
geoshow projects the latitude and longitude coordinates.

figure
ax = axesm(mstruct, 'Grid', 'on',...
    'GColor', [.9 .9 .9], ...
    'MapLatlimit', latlim, 'MapLonLimit', lonlim, ...
    'ParallelLabel', 'on', 'PLabelLocation', .025, 'PlabelMeridian', 'west', ...
    'MeridianLabel', 'on', 'MlabelLocation', .05, 'MLabelParallel', 'south', ...
    'MLabelRound', -2, 'PLabelRound', -2, ...
    'PLineVisible', 'on', 'PLineLocation', .025, ...
    'MLineVisible', 'on', 'MlineLocation', .05);
geoshow(overview, overviewR)
axis off
tightmap
title({'Boston and Surrounding Region', 'Geographic Coordinates'})
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Since the coordinates of the GeoTIFF image are in a projected coordinate reference system, use
mapshow to overlay the more detailed Boston image onto the display. Plot the boundaries of the
Boston image in red.

mapshow(boston, R)
plot(R.XWorldLimits([1 1 2 2 1]), R.YWorldLimits([1 2 2 1 1]), 'Color', 'red')
title({'Boston and Surrounding Region', 'Geographic and Projected Coordinates'})
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Zoom to the geographic region of the GeoTIFF image by setting the axes limits to the limits of the
Boston image and add a small buffer. Note that the buffer size (delta) is expressed in meters.

delta = 1000;
xLimits = R.XWorldLimits + [-delta delta];
yLimits = R.YWorldLimits + [-delta delta];
xlim(ax,xLimits)
ylim(ax,yLimits)
setm(ax, 'Grid', 'off');
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You can overlay the road vectors onto the map display. Use a symbol specification to give each class
of road its own color.

roadColors = makesymbolspec('Line',...
    {'CLASS', 2, 'Color', 'k'}, ...
    {'CLASS', 3, 'Color', 'g'},...
    {'CLASS', 4, 'Color', 'magenta'}, ...
    {'CLASS', 5, 'Color', 'cyan'}, ...
    {'CLASS', 6, 'Color', 'b'},...
    {'Default',  'Color', 'k'});
mapshow(roads, 'SymbolSpec', roadColors)
title({'Boston and Surrounding Region','Including Boston Roads'})

 Create Maps with Data in Projected Coordinate Reference Systems

4-79



You can also overlay data from a GPS stored in a GPX file. Import point geographic vector data from
the boston_placenames.gpx file included with the Mapping Toolbox™ software. The file contains
latitude and longitude coordinates of geographic point features in part of Boston, Massachusetts,
USA.

placenames = readgeotable('boston_placenames.gpx');

Overlay the placenames onto the map and increase the marker size, change the markers to circles
and set their edge and face colors to yellow.

geoshow(placenames, 'Marker','o', 'MarkerSize', 6, ...
    'MarkerEdgeColor', 'y', 'MarkerFaceColor','y')
title({'Boston and Surrounding Region','Including Boston Roads and Placenames'})
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Data Set Information

The files boston.tif and boston_ovr.jpg include materials copyrighted by GeoEye, all rights
reserved. GeoEye was merged into the DigitalGlobe corporation on January 29th, 2013. For more
information about the data sets, use the commands type boston.txt and type boston_ovr.txt.

The files boston_roads.shp and boston_placenames.gpx are from the Bureau of Geographic
Information (MassGIS), Commonwealth of Massachusetts, Executive Office of Technology and
Security Services. For more information about the data sets, use the commands type
boston_roads.txt and type boston_placenames_gpx.txt.

 Create Maps with Data in Projected Coordinate Reference Systems

4-81



Interactively Identify Geographic Locations

Find the latitude-longitude coordinates of locations on a map by interactively selecting the locations.

This page shows how to create similar maps using map axes (since R2023a) and axesm-based maps.
For a comparison of map axes and axesm-based maps, including when to use each type of display, see
“Choose a 2-D Map Display” on page 4-2.

Load Data

Read a shapefile containing world land areas into the workspace.

land = readgeotable("landareas.shp");

Find Coordinates on Map Axes

Interactively identify locations on map axes by using the ginput function.

Create a new map that uses a sinusoidal projection. Create the projected CRS using the ESRI code
54008. Provide geographic context for the map by displaying the land areas.

figure
proj = projcrs(54008,Authority="ESRI");
newmap(proj)

geoplot(land)
hold on
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Identify the coordinates of four locations. To use predefined points, specify
interactivelySelectLocations as false. To interactively select the locations, specify
interactivelySelectLocations as true.

interactivelySelectLocations = false;
if interactivelySelectLocations
    [lat,lon] = ginput(4);
else
    lat = [38 -12 20 34];
    lon = [-98 -55 17 89];
end

Display the locations on the map.

geoscatter(lat,lon,"filled")

Alternatively, you can return the current mouse position on a map axes by using the CurrentPoint
property of the axes, as in get(gca,"CurrentPoint").

Find Coordinates on axesm-Based Maps

Interactively identify locations on axesm-based maps by using the inputm function.

Create an axesm-based map that uses a sinusoidal projection. Provide geographic context for the
map by displaying the land areas.

figure
axesm sinusoid
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framem on
gridm on
geoshow(land)

Identify the coordinates of four locations. To use predefined points, specify
interactivelySelectLocations as false. To interactively select the locations, specify
interactivelySelectLocations as true.

interactivelySelectLocations = false;
if interactivelySelectLocations
    [lat,lon] = ginput(4);
else
    lat = [38 -12 20 34];
    lon = [-96 -55 17 89];
end

Display the locations on the map.

scatterm(lat,lon,"filled","r")
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At each location, calculate the area scale and the maximum angular deformation of the map
projection. The result indicates that the sinusoid projection preserves area, but has variable
angular distortion across the map (less distortion near the equator and more distortion near the
poles).

[areascale,maxangdef] = distortcalc(lat,lon)

areascale = 1×4

    1.0000    1.0000    1.0000    1.0000

maxangdef = 1×4

   54.5671   11.3974    5.8094   46.9515

Alternatively, you can return the current mouse position on an axesm-based map by using the
gcpmap function. This function is analogous to get(gca,"CurrentPoint").

See Also
Functions
newmap | geoscatter | axesm | scatterm | distortcalc
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Related Examples
• “Interactively Display Text on Maps” on page 4-95
• “Create an Interactive Map for Selecting Point Features” on page 4-87
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Create an Interactive Map for Selecting Point Features

This example shows how to construct a map of major world cities enhanced with coastlines and
terrain. It uses the modified azimuthal Briesemeister map projection. The example includes some
optional code that allows a user to interactively pick a location and get the name and location of the
nearest city. To see this part of the example, you must run the complete example, pop-out the last
illustration into a separate MATLAB figure, and then run the optional code at the MATLAB command
line.

Step 1: Set up a Map and Render a Global Elevation Grid

Create an axesm-based map.

figure 
axesm bries
text(2.8,-1.8,'Briesemeister projection','HorizontalAlignment','right')
framem('FLineWidth',1)

Load elevation raster data and a geographic cells reference object. Display the data on the map.

load topo60c
geoshow(topo60c,topo60cR,'DisplayType','texturemap')
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Step 2: Improve the Terrain Display

Apply a colormap appropriate for elevation data. Make the display brighter.

demcmap(topo60c)
brighten(0.5)
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Step 3: Add Simplified Coastlines

Load global coastline coordinates. Generalize the coastlines to 0.25-degree tolerance. Then, plot the
coastlines in brown.

load coastlines
[rlat,rlon] = reducem(coastlat,coastlon,0.25);
geoshow(rlat,rlon,'Color',[.6 .5 .2],'LineWidth',1.5)
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Step 4: Plot City Locations with Red Point Markers

Read a shapefile containing names of cities worldwide and their coordinates in latitude and longitude.

cities = readgeotable('worldcities.shp');

Extract the point latitudes and longitudes with extractfield, and add them to the map.

lats = cities.Shape.Latitude;
lons = cities.Shape.Longitude

lons = 318×1

   -3.9509
   54.7589
   -0.2121
   35.3894
   38.7575
  138.8528
   44.5408
   72.2474
   30.4098
    3.0397
      ⋮

geoshow(lats, lons,...
        'DisplayType', 'point',...
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        'Marker', 'o',...
        'MarkerEdgeColor', 'r',...
        'MarkerFaceColor', 'r',...
        'MarkerSize', 3)
text(-2.8,-1.8,'Major World Cities')

Step 5: Select Cities Interactively (Optional)

Now, using the map you've created, you can set up a simple loop to prompt for clicks on the map and
display the name and coordinates of the nearest city. You must pop the last map you created in Step 4
into a separate MATLAB figure window, using the button that appears at the top of the map. Also, in
the following code, set runCitySelectionLoop to true, and execute the code at the command line.

The code first displays text instructions at the upper left of the map. Then, it enters a loop in which it
captures selected latitudes and longitudes with inputm. Use distance to calculate the great circle
distance between each selected point and every city in the database. Determine index of the closest
city, change the appearance of its marker symbol, and display the city's name and latitude/longitude
coordinates.

runCitySelectionLoop = false; % Set to true to run optional city selection loop

if(runCitySelectionLoop)
    h1 = text(-2.8, 1.9, 'Click on a dot for its city name. Press ENTER to stop');
    h2 = text(-2.8, 1.7, '');
    h3 = text(-2.8, 1.5, 'City Coordinates.');
    while true
        [selected_lat,selected_lon] = inputm(1);
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        if isempty(selected_lat) 
            break % User typed ENTER
        end
        d = distance(lats, lons, selected_lat, selected_lon);
        k = find(d == min(d(:)),1);
        city = cities(k,:);
        geoshow(city.Shape.Latitude, city.Shape.Longitude, ...
                'DisplayType', 'point', ...
                'Marker', 'o', ...
                'MarkerEdgeColor', 'k', ...
                'MarkerFaceColor', 'y', ...
                'MarkerSize', 3)
       h2.String = city.Name;
       h3.String = num2str([city.Shape.Latitude, city.Shape.Longitude],'%10.2f');
    end
    disp('End of input.')
end

See Also
inputm | geoshow | demcmap | shaperead
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Interactively Create Small Circle and Track Annotations on
Maps

You can interactively generate geographic line annotations, such as navigational tracks and small
circles. Great circle tracks are the shortest distance between points that, when closed, partition the
Earth into equal halves. A small circle is the locus of points at a constant distance from a reference
point. Use trackg and scircleg to create them by clicking on the map. Double-click the tracks or
circles to modify the lines. Shift+click the tracks to type specific parameters into a control panel.
The control panels also allow you to retrieve or set properties of tracks and circles (for instance,
great circle distances and small circle radii).

Set up an orthographic view centered over the Pacific Ocean. Use the coastlines MAT-file.

axesm('ortho','origin',[30 180])
framem;
gridm
load coastlines
plotm(coastlat,coastlon,'k')

Create a track with the trackg function, which prompts for two endpoints. The default track type is
a great circle. Create a great circle track from Los Angeles, California, to Tokyo, Japan, and a 1000
km radius small circle centered on the Hawaiian Islands.

trackg
Track1:  Click on starting and ending points

Now create a small circle around Hawaii with the scircleg function, which prompts for a center
point and a point on the perimeter. Make the circle's radius about 2000 km, but don't worry about
getting the size exact.

scircleg
Circle 1:  Click on center and perimeter

The map should look approximately like this.
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To adjust the size of the small circle to be 2000 km, Shift+click anywhere on its perimeter. The
Small Circles dialog box appears.

Type 2000 into the Radius field.

Click Close. The small circle adjusts to be 2000 km around Hawaii.

To adjust the track between Los Angeles and Tokyo, Shift+click on it. This brings up the Track
dialog, with which you specify a position and initial azimuth for either endpoint, as well as the length
and type of the track.

Change the track type from Great Circle to Rhumb Line with the Track pop-up menu. The track
immediately changes shape.

Experiment with the other Track dialog controls. Also note that you can move the endpoints of the
track with the mouse by dragging the red circles, and obtain the arc's length in various units of
distance.

The following figure shows the Small Circles and Track dialog boxes.
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Interactively Display Text on Maps

Display text on maps by interactively selecting the locations for the text.

This page shows how to create similar maps using map axes (since R2023a) and axesm-based maps.
For a comparison of map axes and axesm-based maps, including when to use each type of display, see
“Choose a 2-D Map Display” on page 4-2.

Load Data

Read a shapefile containing polygon shapes for each of the US states into a geospatial table.

states = readgeotable("usastatehi.shp");

Display Text on Map Axes

Interactively display text on map axes by using the gtext function. To display text on map axes by
specifying numeric arguments, use the text function.

Set up a map using a projected coordinate reference system (CRS) that is appropriate for the
conterminous United States. Create the projected CRS using the ESRI code 102003.

figure
proj = projcrs(102003,Authority="ESRI");
newmap(proj)

geoplot(states)
hold on
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Label Maine, Florida, and Texas by displaying text on the map. To use predefined locations, specify
interactivelySelectLocations as false. To interactively select the locations, specify
interactivelySelectLocations as true.

txt = ["Maine"; "Florida"; "Texas"];
interactivelySelectLocations = false;
if interactivelySelectLocations
    gtext(txt)
else
    lat = [47.5329 27.4865 27.2904];
    lon = [-76.9502 -88.3942 -105.6624]; 
    text(lat,lon,txt)
end
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If you interactively select a location outside of the map outline, then the gtext function might not
display the text or might display the text in an unexpected location.

Display Text on axesm-Based Maps

Interactively identify locations on axesm-based maps by using the gtextm function. To display text on
axesm-based maps by specifying numeric arguments, use the textm function.

Create an axesm-based map that is appropriate for the conterminous United States. Provide
geographic context for the map by displaying the land areas.

figure
usamap conus
geoshow(states)

 Interactively Display Text on Maps

4-97



Label Maine, Florida, and Texas by displaying text on the map. To use predefined locations, specify
interactivelySelectLocations as false. To interactively select the locations, specify
interactivelySelectLocations as true.

txt = ["Maine"; "Florida"; "Texas"];
interactivelySelectLocations = false;
if interactivelySelectLocations
    gtextm(txt)
else
    lat = [47.5329 27.4865 27.2904];
    lon = [-76.9502 -88.3942 -105.6624];  
    textm(lat,lon,txt)
end

4 Creating and Viewing Maps

4-98



If you interactively select a location outside of the map frame, then the gtextm function might not
display the text or might display the text in an unexpected location.

See Also
Functions
newmap | geoplot | usamap | geoshow

Related Examples
• “Interactively Identify Geographic Locations” on page 4-82
• “Add Labels and Annotations to Map Axes” on page 6-2
• “Create an Interactive Map for Selecting Point Features” on page 4-87
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Work with Objects by Name
You can manipulate displayed map objects by name. Many Mapping Toolbox functions assign
descriptive names to the Tag property of the objects they create. The namem and related functions
allow you to control the display of groups of similarly named objects, determine the names and
change them if desired, and use the name in the set and get functions.

Some mapping display functions like framem, gridm, and contourm assign object tags by default.
You can also set the name upon display by assigning a value to the Tag property in mapping display
functions that use property name/property value pairs. If the Tag does not contain a value, the name
defaults to an object's Type property, such as 'line' or 'text'.

Manipulate Displayed Map Objects By Name

This example shows how to manipulate objects displayed on axesm-based maps by name. Many
functions assign descriptive names to the Tag property of the objects they create. The namem and
related functions allow you to control the display of groups of similarly named objects, determine the
names and change them, if desired, and use the name in calls to get and set .

Display a vector map of the world.

f = axesm('fournier')

f = 
  Axes with properties:

             XLim: [0 1]
             YLim: [0 1]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

framem on; 
gridm on;
plabel on; 
mlabel('MLabelParallel',0)
load coastlines
plotm(coastlat,coastlon,'k','Tag','Coastline')

4 Creating and Viewing Maps

4-100



List the names of the objects in the current axesm-based map using namem .

namem

ans = 6x9 char array
    'PLabel   '
    'MLabel   '
    'Parallel '
    'Meridian '
    'Coastline'
    'Frame    '

Use handlem to get the handles to the graphics objects displayed on an axesm-based map. You use
these handles to get or set object properties. For example, change the line width of the coastline with
set . If you call handlem with no arguments, it opens a graphical user interface that lists all the
objects on the map. You can select objects interactively.

set(handlem('Coastline'),'LineWidth',2)
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Change the colors of the meridian and parallel labels separately.

set(handlem('Mlabel'),'Color',[.5 .2 0])
set(handlem('Plabel'),'Color',[.2 .5 0])
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Change the color of the labels to be the same.

setm(f,'fontcolor', [.4 .5 .6])
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Use handlem specifying the 'all' modifier to get a list of all text objects or all line objects.

t = handlem('alltext')

t = 
  26x1 Text array:

  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (PLabel)
  Text    (MLabel)
  Text    (MLabel)
  Text    (MLabel)
  Text    (MLabel)
  Text    (MLabel)
  Text    (MLabel)
  Text    (MLabel)
  Text    (MLabel)
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  Text    (MLabel)
  Text    (MLabel)
  Text    (MLabel)
  Text    (MLabel)
  Text    (MLabel)

l = handlem('allline')

l = 
  3x1 Line array:

  Line    (Parallel)
  Line    (Meridian)
  Line    (Coastline)
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Making Three-Dimensional Maps

• “Sources of Terrain Data” on page 5-2
• “Determine and Visualize Visibility Across Terrain” on page 5-3
• “Visualize Viewsheds and Coverage Maps Using Terrain” on page 5-5
• “Add Light Source to Terrain Map” on page 5-35
• “Surface Relief Shading” on page 5-38
• “Colored Surface Shaded Relief” on page 5-43
• “Relief Mapping with Light Objects” on page 5-47
• “Drape Data on Elevation Maps” on page 5-55
• “Drape Geoid Heights over Topography” on page 5-60
• “Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid” on page 5-65
• “Access Basemaps and Terrain for Geographic Globe” on page 5-68
• “Create Interactive Basemap Picker” on page 5-70
• “Visualize Aircraft Line-of-Sight over Terrain” on page 5-72
• “Visualize UAV Flight Path on 2-D and 3-D Maps” on page 5-81
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Sources of Terrain Data
Nearly all published terrain elevation data is in the form of data grids. “Types of Data Grids and
Raster Display Functions” on page 4-55 described basic approaches to rendering surface data grids
with Mapping Toolbox functions, including viewing surfaces in 3-D axes. The following sections
describe some common data formats for terrain data, and how to access and prepare data sets for
particular areas of interest.

Digital Terrain Elevation Data from NGA
The Digital Terrain Elevation Data (DTED) Model is a series of gridded elevation models with global
coverage at resolutions of 1 kilometer or finer. DTED files are products of the U. S. National
Geospatial Intelligence Agency (NGA), formerly the National Imagery and Mapping Agency (NIMA),
and before that, the Defense Mapping Agency (DMA). The data is provided as 1-by-1 degree tiles of
elevations on geographic grids with product-dependent grid spacing. In addition to NGA's own DTED
files, terrain data from Shuttle Radar Topography Mission (SRTM), a cooperative project between
NASA and NGA, are also available in DTED format, levels 1 and 2 (see below).

The lowest resolution data is the DTED Level 0, with a grid spacing of 30 arc-seconds, or about 1
kilometer. The DTED files are binary. The files have file names with the extension dtN, where N is the
level of the DTED product. You can find published specifications for DTED at the NGA website.

NGA also provides higher resolution terrain data files. DTED Level 1 has a resolution of 3 arc-
seconds, or about 100 meters, increasing to 18 arc-seconds near the poles. It was the primary source
for the USGS 1:250,000 (1 degree) DEMs. Level 2 DTED files have a minimum resolution of 1 arc-
second near the equator, increasing to 6 arc-seconds near the poles. DTED files are available on from
several sources on CD-ROM, DVD, and on the Internet.

Note For information on locating map data for download over the Internet, see the following
documentation at the MathWorks website: “Find Geospatial Data Online” on page 2-77.

Digital Elevation Model Files from USGS
The United States Geological Survey (USGS) has prepared terrain data grids for the U.S. suitable for
use at scales between 1:24,000 and 1:250,000 and beyond. Some of this data originated from Defense
Mapping Agency DTED files. Specifications and data quality information are available for these
digital elevation models (DEMs) and other U.S. National Mapping Program geodata from the USGS.
USGS no longer directly distributes 1:24,000 DEMs and other large-scale geodata. U.S. DEM files in
SDTS format are available from private vendors, either for a fee or at no charge, depending on the
data sets involved.

The largest scale USGS DEMs are partitioned to match the USGS 1:24,000 scale map series. The grid
spacing for these elevations models is 30 meters on a Universal Transverse Mercator grid. Each file
covers a 7.5-minute quadrangle. (Note, however, that only a subset of paper quadrangle maps are
projected with UTM, and that USGS vector geodata products might not use this coordinate system.)
The map and data series is available for much of the conterminous United States, Hawaii, and Puerto
Rico.
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Determine and Visualize Visibility Across Terrain
You can use regular data grids of elevation data to answer questions about the mutual visibility of
locations on a surface (intervisibility). For example,

• Is the line of sight from one point to another obscured by terrain?
• What area can be seen from a location?
• What area can see a given location?

The first question can be answered with the los2 function. In its simplest form, los2 determines the
visibility between two points on the surface of a digital elevation map. You can also specify the
altitudes of the observer and target points, as well as the datum with respect to which the altitudes
are measured. For specialized applications, you can even control the actual and effective radius of the
Earth. This allows you to assume, for example, that the Earth has a radius 1/3 larger than its actual
value, a setting which is frequently used in modeling radio wave propagation.

Compute Line of Sight
The following example shows a line-of-sight calculation between two points on a regular data grid
generated by the peaks function. The calculation is performed by the los2 function, which returns a
logical result: 1 (points are mutually visible—intervisible), or 0 (points are not intervisible).

1 Create an elevation grid using peaks with a maximum elevation of 500, and set its origin at (0°N,
0°W), with a spacing of 1000 cells per degree):

map = 500*peaks(100);
maplegend = [ 1000 0 0];

2 Define two locations on this grid to test intervisibility:

lat1 = -0.027; 
lon1 = 0.05; 
lat2 = -0.093; 
lon2 = 0.042;

3 Calculate intervisibility. The final argument specifies the altitude (in meters) above the surface of
the first location (lat1, lon1) where the observer is located (the viewpoint):

los2(map,maplegend,lat1,lon1,lat2,lon2,100)
ans =

     1
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The los2 function produces a profile diagram in a figure window showing visibility at each grid cell
along the line of sight that can be used to interpret the Boolean result. In this example, the diagram
shows that the line between the two locations just barely clears an intervening peak.

You can also compute the viewshed, a name derived from watershed, which indicates the elements of
a terrain elevation grid that are visible from a particular location. The viewshed function checks for
a line of sight between a fixed observer and each element in the grid. See the viewshed function
reference page for an example.

5 Making Three-Dimensional Maps

5-4



Visualize Viewsheds and Coverage Maps Using Terrain

Display viewsheds and coverage maps for a region of interest using satellite imagery and terrain
data. A viewshed includes areas that are within line of sight (LOS) of a set of points, and a coverage
map includes received power for the areas within range of a set of wireless transmitters. You can use
a viewshed as a first-order approximation of a coverage map.

By combining the mapping capabilities in Mapping Toolbox™ with the RF propagation capabilities in
Antenna Toolbox™, you can create contoured coverage maps and use the contour data for both
visualization and analysis. This example shows you how to:

• View imagery and terrain on 2-D maps
• View imagery, terrain, and viewsheds on 3-D relief maps
• View coverage maps in 2-D using contour plots and bar graphs
• Determine whether nearby points are within coverage
• View coverage maps for other regions of interest

View Imagery on 2-D Map

You can view imagery for a region of interest by plotting data into geographic axes. Geographic axes
enable you to plot 2-D data over basemaps, explore regions interactively, and add data tips to points
of interest.

Specify the geographic coordinates and heights of two cell towers in the San Fernando Valley region.
Specify the heights using meters above the terrain.

lat1 = 34.076389;
lon1 = -118.468944;
towerHeight1 = 17.1;
text1 = "Tower 1";

lat2 = 34.386389;
lon2 = -118.329778;
towerHeight2 = 30.5;
text2 = "Tower 2";

Display the locations of the cell towers over a satellite basemap.

figure
basemap = "satellite";
geobasemap(basemap)

geoplot([lat1 lat2],[lon1 lon2], ...
    LineStyle="none",Marker="o",MarkerSize=10, ...
    MarkerEdgeColor="k",MarkerFaceColor="c")

Prepare to create a 3-D relief map for the same region by querying the zoom level, latitude limits, and
longitude limits of the geographic axes. To ensure that the relief map covers the same region, change
the zoom level of the geographic axes to an integer.

gx = gca;
zoomLevel = floor(gx.ZoomLevel);
gx.ZoomLevel = zoomLevel;        
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[latlim,lonlim] = geolimits(gx);

Customize the map by labeling the cell towers and adding a title.

txtDelta = 0.005;
text(lat1 + txtDelta,lon1 + txtDelta,text1,Color="w")
text(lat2 + txtDelta,lon2 + txtDelta,text2,Color="w")
title("Satellite Imagery of San Fernando Valley Region")
subtitle("With Placement of Cell Towers")

View Terrain on 2-D Map

Visualize the terrain for the same region of interest by plotting imported elevation data into an
axesm-based map. axesm-based maps enable you to display geographic data using a map projection.

Read Terrain Elevation Data

Read terrain elevation data for the region of interest from a Web Map Service (WMS) server. WMS
servers provide geospatial data such as elevation, temperature, and weather from web-based sources.

Search the WMS Database for terrain elevation data hosted by MathWorks®. The wmsfind function
returns search results as layer objects. A layer is a data set that contains a specific type of geographic
information, in this case elevation data.

layer = wmsfind("mathworks",SearchField="serverurl");
layer = refine(layer,"elevation");
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Read the elevation data from the layer into the workspace as an array and a spatial reference object
in geographic coordinates. Get quantitative data by specifying the image format as BIL.

[Z,RZ] = wmsread(layer,Latlim=latlim,Lonlim=lonlim,ImageFormat="image/bil");

Prepare the elevation data for plotting by converting the data type to double.

Z = double(Z);

Find Tower Elevations

Calculate the terrain elevation at the base of each cell tower. The elevations are in meters above
mean sea level.

height1 = geointerp(Z,RZ,lat1,lon1,"nearest")

height1 = 177

height2 = geointerp(Z,RZ,lat2,lon2,"nearest")

height2 = 1422

Visualize Elevation and Tower Locations

Create an axesm-based map with an appropriate projection for the region. Then, display the elevation
data as a surface using an appropriate colormap. Note that the areas of highest elevation are in the
northeast corner.

figure
usamap(Z,RZ)
geoshow(Z,RZ,DisplayType="texturemap")
demcmap(Z,256)

geoshow(lat1,lon1,DisplayType="point",ZData=height1, ...
    MarkerEdgeColor="k",MarkerFaceColor="c",MarkerSize=10,Marker="o")
geoshow(lat2,lon2,DisplayType="point",ZData=height2, ...
     MarkerEdgeColor="k",MarkerFaceColor="c",MarkerSize=10,Marker="o")

textm(lat1 + txtDelta,lon1 + txtDelta,text1)
textm(lat2 + txtDelta,lon2 + txtDelta,text2)
title("Elevation of San Fernando Valley Region")

cb = colorbar;
cb.Label.String = "Elevation in meters";
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View Imagery, Terrain, and Viewshed on 3-D Relief Map

Visualize the imagery, terrain, and viewshed for the region by plotting the terrain data over a
basemap image in a standard axes. Basemap images enable you to provide geographic context for
plot types that geographic axes do not support, such as 3-D surfaces.

Read Basemap Image

Read a basemap image using the same basemap, geographic limits, and zoom level as the geographic
axes. The readBasemapImage function reads the image into the workspace as an array, a spatial
reference object in Web Mercator (WGS 84/Pseudo-Mercator) coordinates, and an attribution string.

[A,RA,attrib] = readBasemapImage(basemap,latlim,lonlim,zoomLevel);

To display the cell tower locations over the basemap image, you must first project the geographic
coordinates to Web Mercator coordinates.

proj = RA.ProjectedCRS;
[x1,y1] = projfwd(proj,lat1,lon1);
[x2,y2] = projfwd(proj,lat2,lon2);

Plot the projected coordinates over the basemap image. Note that this visualization is similar to the
geographic axes visualization.

figure
axis off
hold on
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mapshow(A,RA)
plot([x1 x2],[y1 y2], ...
    LineStyle="none",Marker="o",MarkerSize=10, ...
    MarkerEdgeColor="k",MarkerFaceColor="c")

txtDeltaXY = 500;
text(x1 + txtDeltaXY,y1 + txtDeltaXY,text1,Color="w")
text(x2 + txtDeltaXY,y2 + txtDeltaXY,text2,Color="w")
title("Satellite Basemap Imagery of San Fernando Valley Region")
subtitle("Attribution: " + attrib)

Calculate Viewsheds from Towers

Read the terrain data again, this time using array dimensions and geographic limits that match the
dimensions and limits of the basemap image.

[latlim,lonlim] = projinv(proj,RA.XWorldLimits,RA.YWorldLimits);
szA = RA.RasterSize;

[Z,RZ] = wmsread(layer,Latlim=latlim,Lonlim=lonlim, ...
    ImageHeight=szA(1),ImageWidth=szA(2),ImageFormat="image/bil");
Z = double(Z);

Calculate the viewshed for each tower by specifying the terrain data and the cell tower coordinates.
The first argument returned by each viewshed call indicates visible areas using 1 values and
obscured areas using 0 values.
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[vis1,visR1] = viewshed(Z,RZ,lat1,lon1,towerHeight1);
[vis2,visR2] = viewshed(Z,RZ,lat2,lon2,towerHeight2);

Calculate the combined viewshed for both towers. To avoid plotting the obscured areas, replace the 0
values with NaN values.

visCombined = vis1 | vis2;
vis = visCombined;
vis = double(vis);
vis(vis == 0) = NaN;
visR = visR2;

Extract the geographic coordinates of the elevation data from its spatial reference object. Then,
project the coordinates to Web Mercator coordinates.

[latz,lonz] = geographicGrid(RZ);
[xz,yz] = projfwd(proj,latz,lonz);

View Individual and Combined Viewsheds

Display the viewshed for each tower and the combined viewshed for both towers in a tiled layout.

Define a colormap for the viewshed. Use turquoise for visible areas and black for obscured areas.

cmapt = [0 0 0];
covcolor = [0.1034  0.8960  0.7150];
cmapt(2,:,:) = covcolor;

Create a tiled layout. Display the viewshed for the individual towers on the left.

figure
clim([0 1])
colormap(cmapt)
tiledlayout(2,3,Padding="tight",TileSpacing="tight")

nexttile
geoshow(vis1,visR1,EdgeColor="none",DisplayType="surface")
axis off
title("Viewshed")
subtitle("Tower 1")

nexttile(4)
geoshow(vis2,visR2,EdgeColor="none",DisplayType="surface")
axis off
title("Viewshed")
subtitle("Tower 2")

Display the basemap image and the combined viewshed on the right. Specify the z-coordinates for the
labels using the terrain height (above mean sea level) and the tower height (above the terrain).

nexttile([2,2])
mapshow(A,RA)
hold on
mapshow(xz,yz,vis,EdgeColor="none",DisplayType="surface")
axis off

zdelta = 150;
z1 = height1 + towerHeight1 + zdelta;
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z2 = height2 + towerHeight2 + zdelta;

text(x1,y1,z1,text1,Color="k",EdgeColor="k",BackgroundColor="w")
text(x2,y2,z2,text2,Color="k",EdgeColor="k",BackgroundColor="w")
title("Combined Viewshed Over Basemap Image")
subtitle("Attribution: " + attrib)

View Basemap Image and Viewshed on 3-D Relief Map

Prepare the combined viewshed for plotting.

• Find the indices of visible areas in the combined viewshed.
• Replace the visible areas in the combined viewshed with the terrain data (the corresponding

values of Z).

[row,col] = find(visCombined);
sz = size(visCombined);
ind = sub2ind(sz,row,col);
vis(ind) = Z(ind);

Create a new figure that uses the same colormap as the tiled layout. Remove the axes lines and
enable the plot to extend to the edges of the axes.

figure
colormap(covcolor)

hold on
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axis off 
axis tight

Visualize the basemap image, viewshed, and terrain using surfaces.

• Display the terrain by draping the basemap image over the elevation data. Specify the z-
coordinates using the terrain data, and specify the surface colors using the image data.

• Display the combined viewshed.
• Customize the plot by adding text labels and a title.
• View the plot in 3-D. Adjust the data aspect ratio so that elevation scale is comparable to the xy-

scale.

mapshow(xz,yz,Z,DisplayType="surface",CData=A)

mapshow(xz,yz,vis,EdgeColor="none",DisplayType="surface")

text(x1,y1,z1,text1,Color="k",EdgeColor="k",BackgroundColor="w")
text(x2,y2,z2,text2,Color="k",EdgeColor="k",BackgroundColor="w")
title("Satellite Basemap Imagery with Terrain and Viewshed")
subtitle("Attribution: " + attrib)

daspect([1 1 0.25])
view(3)
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Visualize Coverage Maps in 2-D

A viewshed is comparable to a wireless coverage map that includes only line-of-sight (LOS)
propagation. You can create more detailed coverage maps and calculate received power by using
transmitter antenna sites and propagation models.

Calculate Coverage Map

Create a transmitter site for each cell tower. Then, calculate the coverage map and return the result
as a propagationData object. By default, the coverage function uses a Longley-Rice propagation
model and incorporates diffraction over terrain.

txTower1 = txsite(Name=text1,Latitude=lat1,Longitude=lon1);
txTower2 = txsite(Name=text2,Latitude=lat2,Longitude=lon2);
txsites = [txTower1; txTower2];
pd = coverage(txsites);

Extract latitude and longitude values, power values, and power levels from the propagationData
object by using the propagationDataGrid on page 5-28 helper function. Find the limits of the
quadrangle that bounds the coverage map.

dataVariableName = "Power";
maxrange = [30000 30000];
[lats,lons,data,levels] = propagationDataGrid(pd,dataVariableName,maxrange,txsites);
[covlatlim,covlonlim] = geoquadline(lats,lons);

Define a colormap using the power levels. Create a new figure that uses the power levels colormap.

cmap = turbo(length(levels));
climLevels = [min(levels) max(levels)+10];

figure
colormap(cmap)
clim(climLevels)
hold on

Create an axesm-based map with an appropriate projection for the region. Display the coverage map,
a rectangle that represents the San Fernando Valley region, and the transmitter sites on the map.
Note that the coverage map extends beyond the San Fernando Valley region.

usamap(covlatlim,covlonlim)
geoshow(lats,lons,data,DisplayType="surface")
geoshow(latlim([1 2 2 1 1]),lonlim([1,1,2,2,1]),Color="k")

textm(lat1,lon1,text1,Color="k",FontSize=12)
textm(lat2,lon2,text2,Color="k",FontSize=12)
title("Coverage Map with Boundary of Basemap Image")

cb = colorbar;
cb.Label.String = "Power (dBm)";
cb.Ticks = levels;
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View Contoured Coverage Map on Basemap Image

Project the geographic coordinates of the coverage map to Web Mercator coordinates.

[cx,cy] = projfwd(proj,lats,lons);

Create a figure that uses the power levels colormap.

figure
colormap(cmap)
clim(climLevels)
axis off
hold on

Contour the coverage map, specifying the contour levels as the power levels, and display the result
over the basemap image. Change the limits of the map to match the San Fernando Valley region.

mapshow(A,RA)
contourf(cx,cy,data,LevelList=levels)

xlim(RA.XWorldLimits)
ylim(RA.YWorldLimits)

text(x1,y1,text1,Color="w") 
text(x2,y2,text2,Color="w")
title("Contoured Coverage Map Over Basemap Image")
subtitle("Attribution: " + attrib)
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cb = colorbar;
cb.Label.String = "Power (dBm)";
cb.Ticks = levels;

View Contoured Coverage Map and Viewshed on Basemap Image

Project the geographic coordinates of the combined viewshed to Web Mercator coordinates.

[vlat,vlon] = geographicGrid(visR);
[vx,vy] = projfwd(proj,vlat,vlon);

Display the coverage map and viewshed over the basemap image by using contour plots. You can
create a map with two colorbars by overlaying two axes objects.

Use the first axes to display the basemap image, the coverage map, and a colorbar for the coverage
map.

figure
ax1 = axes;
hold(ax1,"on")
axis(ax1,"off")
clim(ax1,climLevels)
colormap(ax1,cmap)

mapshow(ax1,A,RA)
contourf(ax1,cx,cy,data,LevelList=levels);

xlim(ax1,RA.XWorldLimits)
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ylim(ax1,RA.YWorldLimits)
title(ax1,"Contoured Coverage Map and Viewshed on Basemap Image")
subtitle(ax1,"Attribution: " + attrib)

cb1 = colorbar(ax1);
cb1.Label.String = "Power (dBm)";
cb1.Ticks = levels;

Use the second axes to display the viewshed and a colorbar for the viewshed.

ax2 = axes(Visible="off");
hold(ax2,"on")
colormap(ax2,covcolor)

[~,visContourMap] = contourf(ax2,vx,vy,vis,LevelList=0.5:1:1.5);

cb2 = colorbar(ax2);
cb2.Label.String = "Viewshed";
cb2.Ticks = [];

Reposition the axes objects and the colorbars.

ax1.Position = [ax1.Position(1) ax1.Position(2)-0.04 ax1.Position(3) ax1.Position(4)];
ax2.Position = ax1.Position;
cb1.Position = [cb1.Position(1) cb1.Position(2) cb1.Position(3) cb1.Position(4)*0.8];
cb2.Position = [cb2.Position(1) 0.76 cb2.Position(3) 0.1];
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In addition to LOS analysis, the coverage map incorporates diffraction over terrain. As a result, the
coverage map extends beyond the viewshed.

Adjust the transparency of the viewshed. When you decrease the value of faceAlpha, the viewshed
becomes more transparent and you can see the coverage map beneath.

faceAlpha = ;
visContourMap.FaceAlpha = faceAlpha;

View Contoured Coverage Map on Geographic Axes

To display a contoured coverage map over geographic axes, contour the coverage map using the
contourDataGrid on page 5-29 helper function. Each row of the returned geospatial table
corresponds to a power level and includes the contour shape, the area of the contour shape in square
kilometers, the minimum power for the level, and the power range for the level. The area value for
each contour shape includes the regions that are covered by other contour shapes.

GT = contourDataGrid(lats,lons,data,levels);
disp(GT)

       Shape        Area (sq km)    Power (dBm)    Power Range (dBm)
    ____________    ____________    ___________    _________________

    geopolyshape     2.5889e+06        -120          -120    -110   
    geopolyshape      2.314e+06        -110          -110    -100   
    geopolyshape     2.1344e+06        -100          -100     -90   
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    geopolyshape     1.7129e+06         -90           -90     -80   
    geopolyshape     3.0979e+05         -80           -80     -70   
    geopolyshape          13563         -70           -70     -60   
    geopolyshape         1894.9         -60           -60     -50   
    geopolyshape         676.29         -50           -50     -40   

Plot the contoured coverage map and a rectangle that represents the San Fernando Valley region into
geographic axes.

figure
geobasemap satellite
colormap(cmap)
clim(climLevels)
hold on

hp = geoplot(GT,ColorVariable="Power (dBm)",EdgeColor="k",FaceAlpha=1);
boundary = geoplot(latlim([1 2 2 1 1]),lonlim([1,1,2,2,1]),Color="k",LineWidth=2);

text(lat1,lon1,text1,Color="w") 
text(lat2,lon2,text2,Color="w")
title("Contoured Coverage Map with Boundary of Basemap Image")

cb = colorbar;
cb.Label.String = "Power (dBm)";
cb.Ticks = levels;

Zoom the map into the San Fernando Valley region and delete the boundary.
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geolimits(latlim,lonlim)
delete(boundary)
title("Contoured Coverage Map at Boundary of Basemap Image")

Adjust the transparency of the coverage map. When you decrease the value of faceAlpha, the
coverage map becomes more transparent and you can see the basemap beneath.

faceAlpha = ;
hp.FaceAlpha = faceAlpha;
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View Bar Graph of Coverage Area

Create a bar graph that shows the coverage area in square kilometers for each power level. As the
power level increases, the coverage area decreases.

figure
colormap(cmap)
clim(climLevels)
hold on

bar(GT.("Power (dBm)"),GT.("Area (sq km)"),FaceColor="flat",CData=cmap);
ylabel("Area in square kilometers")
xlabel("Power (dBm)")

cb = colorbar;
cb.Label.String = "Power (dBm)";
cb.Ticks = levels;
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Determine If Points Are Within Coverage

Determine whether points within the San Fernando Valley region are within coverage.

Calculate Coverage at Point Locations

Specify the locations of two points near the cell towers. Determine whether the points are within
coverage by using the incoverage on page 5-32 helper function. The result indicates the first point
is in coverage and the second point is not in coverage.

locationLats = [34.2107 34.1493];
locationLons = [-118.4545 -118.1744];

[tf,powerLevels] = incoverage(locationLats,locationLons,GT);
disp(tf)

   1
   0

Display the power levels. The result -Inf indicates that the second point is not in coverage.

disp(powerLevels)

   -90
  -Inf

Display the point that is in coverage using a cyan marker and the point that is not in coverage using a
black marker.
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figure
geobasemap topographic
hold on
geotickformat dd
geolimits(latlim,lonlim)

geoplot(locationLats(tf),locationLons(tf),"o", ...
    MarkerEdgeColor="c",MarkerFaceColor="c",MarkerSize=10)
geoplot(locationLats(~tf),locationLons(~tf),"o", ...
    MarkerEdgeColor="k",MarkerFaceColor="k",MarkerSize=10)

Interactively Select Points and Calculate Coverage at Point Locations

Select points and determine whether they are in coverage.

Set up a map that uses the power levels colormap. Then, plot the contoured coverage map.

figure
geobasemap topographic
geolimits(latlim,lonlim)
geotickformat dd
hold on
colormap(cmap)
clim(climLevels)

contourPlot = geoplot(GT,ColorVariable="Power (dBm)",EdgeColor="k",FaceAlpha=1);

cb = colorbar;
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cb.Label.String = "Power (dBm)";
cb.Ticks = levels(1:end);

Select the points. Use predefined points by specifying interactivelySelectPoints as false.
Alternatively, you can interactively select points by specifying interactivelySelectPoints as
true. Specify the number of points to interactively select by specifying a value for numberOfPoints.

interactivelySelectPoints = ;
if interactivelySelectPoints

    numberOfPoints = ; %#ok<*UNRCH> 
    title("Select " + string(numberOfPoints) + " Points")
    pts = ginput(numberOfPoints);
else
    pts = [ ...
        34.0732 -118.4652
        34.1880 -118.2000
        34.2200 -118.6172
        34.3849 -118.5472];
end

Determine whether each point is within coverage. If the point is not within coverage, display it on the
map in black. If the point is within coverage, display it on the map using the color associated with its
power level.

for k = 1:size(pts,1)
    latpoint = pts(k,1);
    lonpoint = pts(k,2);
    [tf,powerLevel] = incoverage(latpoint,lonpoint,GT);

    if ~tf
        color = [0 0 0];
    else
        index = GT.("Power (dBm)") == powerLevel;
        color = cmap(index,:,:);
    end

    h = geoplot(latpoint,lonpoint,"o",MarkerEdgeColor=color,MarkerFaceColor=color,MarkerSize=10);
    dt = datatip(h);
    dtrow = dataTipTextRow("Power",powerLevel);
    h.DataTipTemplate.DataTipRows(end+1) = dtrow;
end
title("Selected Points")
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Toggle off the contour plot by setting showContourPlot to false. The color of each point indicates
its power level.

showContourPlot = ;
contourPlot.Visible = showContourPlot;
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Create Geographic Coverage Maps for Other Regions

The geocoverage on page 5-32 helper function calculates or displays a coverage map for the
specified transmitter sites. When you specify an output argument, the function returns a geospatial
table.

T = geocoverage(txsites);
disp(T)

       Shape        Area (sq km)    Power (dBm)    Power Range (dBm)
    ____________    ____________    ___________    _________________

    geopolyshape     2.5889e+06        -120          -120    -110   
    geopolyshape      2.314e+06        -110          -110    -100   
    geopolyshape     2.1344e+06        -100          -100     -90   
    geopolyshape     1.7129e+06         -90           -90     -80   
    geopolyshape     3.0979e+05         -80           -80     -70   
    geopolyshape          13563         -70           -70     -60   
    geopolyshape         1894.9         -60           -60     -50   
    geopolyshape         676.29         -50           -50     -40   

When you omit the output argument, the function contours the coverage map and displays the result
over a basemap.

basemap = "topographic";
geocoverage(txsites(1),basemap)
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You can use the geocoverage helper function to create coverage maps for other locations. For
example, create a coverage map for cell towers near Boston. The geocoverage function calculates
coverage data for up to 30 kilometers from the transmitter sites.

names = ["Clarendon St.","Cambridge St.","Albany St."];
bostonLat = [42.348722 42.361222 42.338444];
bostonLon = [-71.075889 -71.069778 -71.065611];
bostonH = [260 30 23];
freq = [852.637e6 862.012e6 862.012e6];
txs = txsite(Name=names,Latitude=bostonLat,Longitude=bostonLon, ...
             AntennaHeight=bostonH,TransmitterFrequency=freq);
geocoverage(txs,basemap)
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The cell towers are close together. View the area immediately around the towers by zooming in on the
coverage map.

gx = gca;
gx.ZoomLevel = 12;
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Helper Functions

The propagationDataGrid helper function extracts the latitude and longitude values clats and
clons, the power values cdata, and the power levels levels from the propagation data object pd
with data variable dataVariableName, using the transmitter sites txsites and the maximum
range in meters from the transmitter sites maxrange. Within the function:

• Create regularly spaced grids of latitude and longitude values from the propagation data object.
• Determine which latitude and longitude values are within range of the transmitter sites.
• Create a grid of power values by interpolating the propagation data. Interpolate only the values

that are within range of the transmitter sites.
• Determine the power levels by discretizing the data grid.

function [clats,clons,cdata,levels] = propagationDataGrid(pd,dataVariableName,maxrange,txsites)
% Extract propagation data grid from propagationData object

    % Create grids of latitude and longitude values
    imageSize = [512 512];
    lats = pd.Data.Latitude;
    lons = pd.Data.Longitude;
    data = pd.Data.(dataVariableName);

    [lonmin,lonmax] = bounds(lons);
    [latmin,latmax] = bounds(lats);
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    lonsv = linspace(lonmin,lonmax,imageSize(2));
    latsv = linspace(latmin,latmax,imageSize(1));
    [clons,clats] = meshgrid(lonsv,latsv);

    % Determine which latitude and longitude values are within range of the
    % transmitters
    txlat = [txsites.Latitude]';
    txlon = [txsites.Longitude]';

    numTx = size(txlat,1);
    gc = nan(numel(clons),numTx);
    for txInd = 1:numTx
        gc(:,txInd) = distance(txlat(txInd),txlon(txInd),clats(:),clons(:),wgs84Ellipsoid);
    end
    isInRange = any(gc <= maxrange,2);

    % Create grid of power values
    cdata = nan(imageSize);
    cdata(isInRange) = interp(pd,clats(isInRange),clons(isInRange), ...
        DataVariableName=dataVariableName);

    % Determine power levels
    [bmin,bmax] = bounds(data);
    levels = max(bmin,-120):10:bmax;  
    datalevels = sort(levels);
    maxBin = max(max(datalevels(:)),max(cdata(:))) + 1; % Need max bin edge to include all values
    bins = [datalevels(:); maxBin];
    cdata = discretize(cdata,bins,datalevels);
end

The contourDataGrid helper function contours a data grid created using the
propagationDataGrid helper function and returns the result as a geospatial table. Each row of the
table corresponds to a power level and includes the contour shape, the area of the contour shape in
square kilometers, the minimum power for the level, and the power range for the level. Within the
function:

• Ensure that the function contours power values below the minimum power level by replacing NaN
values in the power grid with a large negative number.

• Calculate accurate areas by projecting the latitude and longitude coordinates using an equal-area
projection, in this case the North America Albers Equal Area Conic projection.

• Contour the projected coordinates using the contourf function. Specify the contour levels as the
power levels. The contourf function returns a matrix that contains, for each power level, the
coordinates of the contour lines.

• Prepare to analyze the data for each contour line by initializing several variables.
• Calculate the area within each contour line. Remove areas that correspond to holes and ignore

negative areas. Unproject the coordinates.
• Create contour shapes from the unprojected coordinates. Include the contour shapes, the areas,

and the power levels in a geospatial table.
• Condense the geospatial table into a new geospatial table with one row per power level. Each row

contains one combined contour shape (that includes all contour shapes for the power level), the
area of the combined contour shape, the minimum power for the level, and the power range for
the level.
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• Clean up the geospatial table. Convert the area of each shape to square kilometers, ensure that
small contours appear on top of large contours by sorting the rows, and rename the table
variables.

function GT = contourDataGrid(latd,lond,data,levels)
% Contour data grid created from propagationDataGrid helper function

    % Replace NaN values in power grid with a large negative number
    data(isnan(data)) = min(levels) - 1000;

    % Project the coordinates using an equal-area projection
    proj = projcrs(102008,"Authority","ESRI");
    [xd,yd] = projfwd(proj,latd,lond);

    % Contour the projected data
    fig = figure("Visible","off");
    obj = onCleanup(@()close(fig));
    c = contourf(xd,yd,data,LevelList=levels);

    % Initialize variables
    x = c(1,:);
    y = c(2,:);
    n = length(y);
    k = 1;
    index = 1;
    levels = zeros(n,1);
    latc = cell(n,1);
    lonc = cell(n,1);
    Area = zeros(n,1);

    % Calculate the area within each contour line. Remove areas that
    % correspond to holes and ignore negative areas.
    while k < n
        level = x(k);
        numVertices = y(k);
        yk = y(k+1:k+numVertices);
        xk = x(k+1:k+numVertices);
        k = k + numVertices + 1;

        [first,last] = findNanDelimitedParts(xk);
        jindex = 0;
        jy = {};
        jx = {};
        sumpart = 0;

        for j = 1:numel(first)
            % Process the j-th part of the k-th level
            s = first(j);
            e = last(j);
            cx = xk(s:e);
            cy = yk(s:e);
            if cx(end) ~= cx(1) && cy(end) ~= cy(1)
                cy(end+1) = cy(1); %#ok<*AGROW>
                cx(end+1) = cx(1);
            end

            if j == 1 && ~ispolycw(cx,cy)
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                % First region must always be clockwise
                [cx,cy] = poly2cw(cx,cy);
            end

            jindex = jindex + 1;
            jy{jindex,1} = cy(:)';
            jx{jindex,1} = cx(:)';

            a = polyarea(cx,cy);
            if ~ispolycw(cx,cy)
                % Remove areas that correspond to holes
                a = -a;
            end

            sumpart = sumpart + a;
        end

        % Add a part when its area is greater than 0. Unproject the
        % coordinates.
        [jx,jy] = polyjoin(jx,jy);
        if length(jy) > 2 && length(jx) > 2 && sumpart > 0
            [jlat,jlon] = projinv(proj,jx,jy);
            latc{index,1} = jlat(:)';
            lonc{index,1} = jlon(:)';
            levels(index,1) = level;
            Area(index,1) = sumpart;
            index = index + 1;
        end
    end

    % Create contour shapes from the unprojected coordinates. Include the
    % contour shapes, the areas, and the power levels in a geospatial
    % table.
    latc = latc(1:index-1);
    lonc = lonc(1:index-1);
    Shape = geopolyshape(latc,lonc);

    Area = Area(1:index-1);

    levels = levels(1:index-1);
    Levels = levels;

    allPartsGT = table(Shape,Area,Levels);  

    % Condense the geospatial table into a new geospatial table with one
    % row per power level.
    GT = table.empty;
    levels = unique(allPartsGT.Levels);
    for k = 1:length(levels)
        gtLevel = allPartsGT(allPartsGT.Levels == levels(k),:);
        tLevel = geotable2table(gtLevel,["Latitude","Longitude"]);
        [lon,lat] = polyjoin(tLevel.Longitude,tLevel.Latitude);
        Shape = geopolyshape(lat,lon);
        Levels = levels(k);
        Area = sum(gtLevel.Area);
        GT(end+1,:) = table(Shape,Area,Levels);
    end
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    maxLevelDiff = max(abs(diff(GT.Levels)));
    LevelRange = [GT.Levels GT.Levels + maxLevelDiff];
    GT.LevelRange = LevelRange;

    % Clean up the geospatial table
    GT.Area = GT.Area/1000;
    GT = sortrows(GT,"Area","descend");
    GT.Properties.VariableNames = ...
        ["Shape","Area (sq km)","Power (dBm)","Power Range (dBm)"]; 
end

The incoverage helper function determines whether the points with latitude values lat and
longitude values lon are within the coverage map defined by the geospatial table T. Within the
function:

• Determine whether the points are within the coverage map and return the results in in. The
elements of in are 1 (true) when the corresponding points are within coverage.

• Determine the power levels for the points and return the results in powerLevels. A value of -Inf
indicates that the corresponding point is not within coverage.

function [in,powerLevels] = incoverage(lat,lon,T)
% Query points in coverage

    % Determine whether points are within coverage
    tf = false(length(T.Shape),length(lat));
    for k = 1:length(T.Shape)
        tf(k,:) = isinterior(T.Shape(k),geopointshape(lat,lon));
    end

    % Determine the power levels for the points
    in = false(length(lat),1);
    powerLevels = -inf(length(lat),1);
    for k = 1:length(in)
        v = tf(:,k);
        in(k) = any(v);
        if in(k)
            powerLevels(k) = max(T{v,"Power (dBm)"});
        end
    end
end

The geocoverage helper function calculates or displays a coverage map for the transmitter sites
txsites. Within the function:

• Calculate the coverage map by using the coverage function. Then, contour the coverage map by
using the progagationDataGrid and contourDataGrid helper functions.

• When you do not specify an output argument, the function displays the contoured coverage map
over geographic axes using the basemap basemap.

• When you do specify an output argument, the function returns the result as a geospatial table.

function varargout = geocoverage(txsites,basemap)
% Display or calculate contoured coverage map
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    % Calculate and contour the coverage map
    pd = coverage(txsites);
    dataVariableName = "Power";
    maxrange = 30000*ones(1,length(txsites));
    [lats,lons,data,levels] = propagationDataGrid(pd,dataVariableName,maxrange,txsites);
    GT = contourDataGrid(lats,lons,data,levels);

    % If you do not specify an output argument, display the coverage map
    if nargout == 0
        if nargin < 2
            basemap = "satellite";
        end

        cmap = turbo(length(levels));
        figure
        geobasemap(basemap)

        geoplot(GT,ColorVariable="Power (dBm)",EdgeColor="k",FaceAlpha=0.5)
        colormap(cmap)
        clim([min(levels) max(levels)+10])

        h = colorbar;
        h.Label.String = "Power (dBm)";
        h.Ticks = levels;

        for k = 1:length(txsites)
            latt = txsites(k).Latitude;
            lont = txsites(k).Longitude;
            text(latt,lont,txsites(k).Name,Color="w")
        end

        title("Coverage Contour Map")
    % If you specify an output argument, return a geospatial table
    else
        varargout{1} = GT;
    end
end

The findNanDelimitedParts helper function finds the indices of the first and last elements of each
NaN-separated part of the array x. The contourDataGrid helper function uses
findNanDelimitedParts.

function [first,last] = findNanDelimitedParts(x)
% Find indices of the first and last elements of each part in x. 
% x can contain runs of multiple NaNs, and x can start or end with 
% one or more NaNs.

    n = isnan(x(:));

    firstOrPrecededByNaN = [true; n(1:end-1)];
    first = find(~n & firstOrPrecededByNaN);

    lastOrFollowedByNaN = [n(2:end); true];
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    last = find(~n & lastOrFollowedByNaN);
end

See Also
Functions
viewshed | contourf | coverage | geoplot | readBasemapImage

Objects
txsite | LongleyRice

Related Examples
• “Create Geospatial Tables” on page 2-18
• “Create Common Plots over Basemap Images” on page 6-58

5 Making Three-Dimensional Maps

5-34



Add Light Source to Terrain Map

Add a light source to a terrain map for a region around South Boulder Peak in Colorado.

First, import elevation data and a geographic postings reference object. To plot the data using
geoshow, the raster data must be of type double or single. Therefore, specify the data type for the
raster using the 'OutputType' name-value pair.

[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1','OutputType','double');

Then, display the data as a surface. Apply a colormap appropriate for terrain data using the demcmap
function.

usamap(R.LatitudeLimits,R.LongitudeLimits);
geoshow(Z,R,'DisplayType','surface')
demcmap(Z)

Set the vertical exaggeration using the daspectm function. Then, specify a light source in the top left
corner of the map. Find the coordinates of the top left corner by querying the LatitudeLimits and
LongitudeLimits properties of the reference object.

daspectm('m',20)
cornerlat = R.LatitudeLimits(2);
cornerlon = R.LongitudeLimits(1);
lightm(cornerlat,cornerlon)
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Restore the luminance of the map by specifying the ambient, diffuse, and specular light strength.

ambient = 0.7; 
diffuse = 1;
specular = 0.6;
material([ambient diffuse specular])

5 Making Three-Dimensional Maps

5-36



The DTED file used in this example is courtesy of the US Geological Survey.

See Also
daspectm | lightm

More About
• “Lighting Overview”
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Surface Relief Shading
You can make dimensional monochrome shaded-relief maps with the surflm function, which is
similar to the surfl function. The effect of surflm is similar to using lights, but the function models
illumination itself (with one “light source” that you specify when you invoke it, but cannot reposition)
by weighting surface normals rather than using light objects.

Shaded relief maps of this type are usually portrayed two-dimensionally rather than as perspective
displays. The surflm function works with any projection except globe.

The surflm function accepts geolocated data grids only. Recall, however, that regular data grids are
a subset of geolocated data grids, to which they can be converted using the geographicGrid
function. The following example illustrates this procedure.

Create Monochrome Shaded Relief Map

Simulate a single light source in a figure using surflm. First, load elevation data and a geographic
cells reference object for the Korean peninsula. Import coastline vector data using readgeotable.
Create a map with appropriate latitude and longitude limits using worldmap.

load korea5c
latlim = korea5cR.LatitudeLimits;
lonlim = korea5cR.LongitudeLimits;
coastline = readgeotable("landareas.shp");

worldmap(latlim,lonlim)

Display the coastline data using geoshow.

geoshow(coastline,'FaceColor','none')

5 Making Three-Dimensional Maps

5-38



Transform the regular data grid to a geolocated data grid using the geographicGrid function.
Then, generate a shaded relief map using surflm. By default, the lighting direction is 45º
counterclockwise from the viewing direction. Therefore, the light source is in the southeast. Change
the colormap to the monochromatic colormap 'copper'.

[klat,klon] = geographicGrid(korea5cR);
s = surflm(klat,klon,korea5c);
colormap('copper')
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Clear the map. Then, display the shaded relief map with a different light source by specifying the
azimuth as 135º and the elevation as 60º. The surface lightens and has a new character because it is
lit closer to overhead and from a different direction.

clmo(s)
s = surflm(klat,klon,korea5c,[135 60]);
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Shift the light to the northwest by specifying the azimuth as -135º. Lower the light to 40º above the
horizon. A lower light source decreases the overall reflectance of the surface when viewed from
above. Therefore, specify a 1-by-4 vector of reflectance constants that describe the relative
contributions of ambient light, diffuse reflection, specular reflection, and the specular shine
coefficient.

clmo(s);
ht = surflm(klat,klon,korea5c,[-135 30],[0.65 0.4 0.3 10]);
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The mountain ridges that run from northeast to southwest are approximately perpendicular to the
light source. Therefore, these parameters demonstrate appropriate lighting for the terrain.

The monochromatic coloration in this example does not differentiate land from water. For an example
that differentiates land from water, see “Colored Surface Shaded Relief” on page 5-43.

See Also
Functions
surflm | geographicGrid

Related Examples
• “Add Light Source to Terrain Map” on page 5-35
• “Relief Mapping with Light Objects” on page 5-47
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Colored Surface Shaded Relief
The functions meshlsrm and surflsrm display maps as shaded relief with surface coloring as well
as light source shading. You can think of them as extensions to surflm that combine surface coloring
and surface light shading. Use meshlsrm to display regular data grids and surflsrm to render
geolocated data grids.

These two functions construct a new colormap and associated CData matrix that uses grayscales to
lighten or darken a matrix component based on its calculated surface normal to a light source. While
there are no analogous MATLAB display functions that work like this, you can obtain similar results
using MATLAB light objects, as “Relief Mapping with Light Objects” on page 5-47 explains.

For further information, see the reference pages for surflsrm, meshlsrm, daspectm, and view.

Create Colored Shaded Relief Map

Display surface illumination over colored elevation data using surflsrm. First, load elevation data
and a geographic cells reference object for the Korean peninsula. Georeference the regular data grid
using geographicGrid.

load korea5c
[klat,klon] = geographicGrid(korea5cR);

Create a colormap appropriate for elevation data. Plot the colored shaded relief map by specifying a
light source with an azimuth of -130º and an altitude of 50º. The surflsrm function transforms the
colormap to shade relief according to the light source. Eliminate white space around the map using
tightmap.

[cmap,clim] = demcmap(korea5c);
axesm('miller','MapLatLimit',[30 45],'MapLonLimit',[115 135])
surflsrm(klat,klon,korea5c,[-130 50],cmap,clim)
tightmap
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You can achieve the same effect using meshlsrm, which operates on regular data grids.

The surface has more contrast than if it were not shaded. Lighten the surface uniformly by 25%.

brighten(0.25)
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Display an oblique view of the surface. Hide the bounding box by setting the Box property,
exaggerate terrain relief by a factor of 50 using daspectm, and set the view to an azimuth of -30º and
an altitude of 30º.

set(gca,'Box','off')
daspectm('meters',50)
view(-30,30)
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You can continue rotating the perspective using view or the Rotate 3D tool in the figure window. You
can continue changing the vertical exaggeration using daspectm. To change the built-in lighting
direction, you must generate a new view using surflsrm.
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Relief Mapping with Light Objects
This example shows how to create a light object to mimic the map produced in “Colored Surface
Shaded Relief” on page 5-43, which uses shaded relief computations rather than light objects.

The meshlsrm and surflsrm functions simulate lighting by modifying the colormap with bands of
light and dark. The map matrix is then converted to indices for the new "shaded" colormap based on
calculated surface normals. Using light objects allows for a wide range of lighting effects. The toolbox
manages light objects with the lightm function, which depends upon the MATLAB light function.
Lights are separate MATLAB graphic objects.

For more information, consult the reference pages for lightm, daspectm, material, lighting,
and view, along with “Lighting, Transparency, and Shading”.

Illuminate Color 3-D Relief Maps with Light Objects

Add a light source to a surface colored data grid using lightm. First, load elevation data and a
geographic cells reference object for the Korean peninsula. Display the data without lighting effects
using meshm. Apply a colormap appropriate for elevation data using demcmap. Eliminate extra white
space around the map using tightmap.

load korea5c
axesm('miller','MapLatLimit',[30 45],'MapLonLimit',[115 135])
meshm(korea5c,korea5cR,size(korea5c),korea5c)
demcmap(korea5c)
tightmap
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Place a light source at the northwest corner of the grid, one degree high, using lightm. The lightm
function is similar to the MATLAB® function light, but accepts latitude and longitude inputs instead
of x, y, and z. Note that the figure becomes darker.

lightm(45,115,1)
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Exaggerate the vertical dimension to make any relief viewable in perspective. Note that the figure
becomes darker still.

daspectm('meters',50)
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Set the ambient (direct), diffuse (skylight), and specular (highlight) surface reflectivity
characteristics, respectively.

material([0.7 0.9 0.8])
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By default, the lighting is flat (plane facets). Change the light to use Gouraud shading (interpolated
normal vectors at facet corners).

lighting Gouraud
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Remove the edges of the bounding box. Change the view by specifying an azimuth of -30º and an
altitude of 30º.

ax = gca;
ax.Box = 'off';
view(-30,30)
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If there is only one light in the current figure, you can remove it using clmo.

clmo(handlem('light'))
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Drape Data on Elevation Maps

Combine Elevation Maps with Other Kinds of Data
Lighting effects can provide important visual cues when elevation maps are combined with other
kinds of data. The shading resulting from lighting a surface makes it possible to "drape" satellite data
over a grid of elevations. It is common to use this kind of display to overlay georeferenced land cover
images from Earth satellites such as LANDSAT and SPOT on topography from digital elevation
models.

When the elevation and image data grids correspond pixel-for-pixel to the same geographic locations,
you can build up such displays using the optional altitude arguments in the surface display functions.
If they do not, you can interpolate one or both source grids to a common mesh.

Drape Data over Terrain with Different Gridding
If you want to combine elevation and attribute (color) data grids that cover the same region but are
gridded differently, you must resample one matrix to be consistent with the other. That is, you can
construct a geolocated grid version of the regular data grid values or construct a regular grid version
of the geolocated data grid values.

It helps if at least one of the grids is a geolocated data grid, because their explicit horizontal
coordinates allow them to be resampled using the geointerp function. These examples show how to
drape data over terrain with different gridding.

Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid

This example shows how to combine an elevation data grid and an attribute (color) data grid that
cover the same region but are gridded differently. The example drapes slope data from a regular data
grid on top of elevation data from a geolocated data grid. The example uses the geolocated data grid
as the source for surface elevations and transforms the regular data grid into slope values, which are
then sampled to conform to the geolocated data grid (creating a set of slope values for the diamond-
shaped grid) and color-coded for surface display. This approach works with any dissimilar grids,
although the two data sets in this example actually have the same origin (the geolocated grid derives
from the topo60c data set).

Load the geolocated data grid from the mapmtx file and the regular data grid from the topo60c file.
The mapmtx file actually contains two regions but this example only uses the diamond-shaped
portion, lt1, lg1, and map1, centered on the Middle East.

load mapmtx lt1 lg1 map1 
load topo60c

Compute the surface aspect, slope, and gradients for topo60c. This example only uses the slopes in
subsequent steps.

[aspect,slope,gradN,gradE] = gradientm(topo60c,topo60cR);

Use the geointerp function to interpolate slope values to the geolocated grid specified by lt1 and
lg1 . The output is a 50-by-50 grid of elevations matching the coverage of the map1 variable.

slope1 = geointerp(slope,topo60cR,lt1,lg1);
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Set up a figure with a Miller projection and use surfm to display the slope data. Specify the z -values
for the surface explicitly as the map1 data, which is terrain elevation. The map mainly depicts steep
cliffs, which represent mountains (the Himalayas in the northeast), and continental shelves and
trenches.

figure 
axesm miller
surfm(lt1,lg1,slope1,map1)

The coloration depicts steepness of slope. Change the colormap to make the steepest slopes magenta,
the gentler slopes dark blue, and the flat areas light blue:

colormap cool

Use view to get a southeast perspective of the surface from a low viewpoint. In 3-D, you can see the
topography as well as the slope.

view(20,30)
daspectm('meter',200)

The default rendering uses faceted shading (no smooth interpolation). Make the surface shiny with
Gouraud shading and specify lighting from the east (the default of camlight lights surfaces from
over the right shoulder of the viewer).

material shiny
camlight
lighting Gouraud
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Remove the white space and view the figure in perspective mode.

axis tight
ax = gca;
ax.Projection = 'perspective';

Drape Geolocated Grid on Regular Data Grid via Texture Mapping

This example shows how to create a new regular data grid that covers the region of the geolocated
data grid, then embed the color data values into the new matrix. The new matrix might need to have
somewhat lower resolution than the original, to ensure that every cell in the new map receives a
value. The example combines dissimilar data grids by creating a new regular data grid that covers
the region of the geolocated data grid's z-data. This approach has the advantage that more
computational functions are available for regular data grids than for geolocated ones. Color and
elevation grids do not have to be the same size. If the resolutions of the two data grids are different,
you can create the surface as a three-dimensional elevation map and later apply the colors as a
texture map. You do this by setting the surface CData property to contain the color matrix, and
setting the surface face color to 'texturemap'.

Load elevation raster data and a geographic cells reference object from topo60c.mat. Get individual
variables containing terrain data from mapmtx.mat.

load topo60c
load mapmtx lt1 lg1 map1
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Identify the geographic limits of the geolocated grid that was loaded from mapmtx.

latlim(1) = 2*floor(min(lt1(:))/2);
lonlim(1) = 2*floor(min(lg1(:))/2);
latlim(2) = 2*ceil(max(lt1(:))/2);
lonlim(2) = 2*ceil(max(lg1(:))/2);

Crop the global elevation data to the rectangular region enclosing the smaller grid.

[topo1,topo1R] = geocrop(topo60c,topo60cR,latlim,lonlim);

Allocate a regular grid filled uniformly with -Inf, to receive texture data.

L1R = georefcells(latlim,lonlim,2,2);
L1 = zeros(L1R.RasterSize);
L1 = L1 - Inf;

Overwrite L1 using imbedm, converting it from a geolocated grid to a regular grid, in which the
values come from the discrete Laplacian of the elevation grid map1.

L1 = imbedm(lt1,lg1,del2(map1),L1,L1R);

Set up an axesm-based map with the Miller projection and use meshm to display the cropped data.
Render the figure as a 3-D view from a 20 degree azimuth and 30 degree altitude, and exaggerate the
vertical dimension by a factor of 200. Both the surface relief and coloring represent topographic
elevation.

figure 
axesm miller
h = meshm(topo1,topo1R,size(topo1),topo1);
view(20,30)
daspectm('m',200)

Apply the L1 matrix as a texture map directly to the surface using the set function. The area not
covered by the [lt1,lg1,map1] geolocated data grid appears dark blue because the corresponding
elements of L1 were set to -Inf.

h.CData = L1;
h.FaceColor = 'texturemap';
material shiny 
camlight
lighting gouraud
axis tight
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See Also
Functions
geointerp | georefcells | imbedm

Related Examples
• “Drape Geoid Heights over Topography” on page 5-60
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Drape Geoid Heights over Topography

Display geoid data draped over topographic relief. For this example, display the geoid data as a color
attribute instead of a 3-D surface.

Load topographic raster data and a geographic cells reference object. Get geoid heights by calling
the egm96geoid function and specifying the reference object.

load topo60c
[N,R] = egm96geoid(topo60cR);

Create an axesm-based map using a Gall stereographic cylindrical projection (a perspective
projection). Use meshm to display variations of the geoid in color, but specify topo60c as the final
argument, to give each geoid grid cell the height (z value) of the corresponding topographic grid cell.
Low geoid heights are shown as blue, high ones as yellow.

axesm gstereo;
meshm(N,R,size(N),topo60c)

For reference, plot the world coastlines in black, raise their elevation to 1000 meters (high enough to
clear the surface in their vicinity), and expand the map to fill the frame.

load coastlines
plotm(coastlat,coastlon,'k')
zdatam(handlem('allline'),1000)
tightmap
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Due to the vertical view and lack of lighting, the topographic relief is not visible, but it is part of the
figure's surface data. Bring it out by exaggerating relief greatly, and then setting a view from the
south-southeast.

daspectm('m',200); tightmap
view(20,35)
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Remove the bounding box, shine a light on the surface (using the default position, offset to the right
of the viewpoint), and render again with Gouraud shading.

ax = gca;
ax.Box = 'off';
camlight;
lighting Gouraud
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Finally, set the perspective to converge slightly (the default perspective is orthographic). Notice that
the geoid mirrors the topography of the major mountain chains such as the Andes, the Himalayas,
and the Mid-Atlantic Ridge. You can also see that large areas of high or low geoid heights are not
simply a result of topography.

ax.Projection = 'perspective';
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Combine Dissimilar Grids by Converting Regular Grid to
Geolocated Data Grid

This example shows how to combine an elevation data grid and an attribute (color) data grid that
cover the same region but are gridded differently. The example drapes slope data from a regular data
grid on top of elevation data from a geolocated data grid. The example uses the geolocated data grid
as the source for surface elevations and transforms the regular data grid into slope values, which are
then sampled to conform to the geolocated data grid (creating a set of slope values for the diamond-
shaped grid) and color-coded for surface display. This approach works with any dissimilar grids,
although the two data sets in this example actually have the same origin (the geolocated grid derives
from the topo60c data set).

Load the geolocated data grid from the mapmtx file and the regular data grid from the topo60c file.
The mapmtx file actually contains two regions but this example only uses the diamond-shaped
portion, lt1, lg1, and map1, centered on the Middle East.

load mapmtx lt1 lg1 map1 
load topo60c

Compute the surface aspect, slope, and gradients for topo60c. This example only uses the slopes in
subsequent steps.

[aspect,slope,gradN,gradE] = gradientm(topo60c,topo60cR);

Use the geointerp function to interpolate slope values to the geolocated grid specified by lt1 and
lg1 . The output is a 50-by-50 grid of elevations matching the coverage of the map1 variable.

slope1 = geointerp(slope,topo60cR,lt1,lg1);

Set up a figure with a Miller projection and use surfm to display the slope data. Specify the z -values
for the surface explicitly as the map1 data, which is terrain elevation. The map mainly depicts steep
cliffs, which represent mountains (the Himalayas in the northeast), and continental shelves and
trenches.

figure 
axesm miller
surfm(lt1,lg1,slope1,map1)

The coloration depicts steepness of slope. Change the colormap to make the steepest slopes magenta,
the gentler slopes dark blue, and the flat areas light blue:

colormap cool
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Use view to get a southeast perspective of the surface from a low viewpoint. In 3-D, you can see the
topography as well as the slope.

view(20,30)
daspectm('meter',200)

The default rendering uses faceted shading (no smooth interpolation). Make the surface shiny with
Gouraud shading and specify lighting from the east (the default of camlight lights surfaces from
over the right shoulder of the viewer).

material shiny
camlight
lighting Gouraud

Remove the white space and view the figure in perspective mode.

axis tight
ax = gca;
ax.Projection = 'perspective';
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Access Basemaps and Terrain for Geographic Globe

Geographic globe objects created using the geoglobe function plot data over basemaps and terrain.
You can access different basemap and terrain choices in different ways.

MathWorks offers a selection of basemaps, including two-tone, color terrain, and high-zoom-level
displays. Six of the basemaps are tiled data sets created using Natural Earth. Five of the basemaps
are high-zoom-level maps provided by Esri. For more information about basemap options, see the
geobasemap function.

Use Installed Basemap
The "darkwater" basemap is installed with MATLAB. The other basemaps are not installed with
MATLAB, but you can access them over an internet connection.

Download Basemaps
To work offline or to improve map responsiveness, you can download the basemaps created using
Natural Earth onto your local system. The basemaps provided by Esri are not available for download.

Download basemaps using the Add-On Explorer.

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Add-Ons.
2 In the Add-On Explorer, scroll to the MathWorks Optional Features section, and click Show

All to find the basemap add-ons. You can also search for the basemap add-ons by name (listed in
the following table) or click Optional Features in Filter by Type.

3 Select the basemap add-ons that you want to download.

Basemap Name Basemap Data Package Name
'bluegreen' MATLAB Basemap Data - bluegreen
'grayland' MATLAB Basemap Data - grayland
'colorterrain' MATLAB Basemap Data - colorterrain
'grayterrain' MATLAB Basemap Data - grayterrain
'landcover' MATLAB Basemap Data - landcover

Add Custom Basemaps
Add custom basemaps from a URL or an MBTiles file by using the addCustomBasemap function.
MATLAB requires an active internet connection to add and use custom basemaps from a URL.
MATLAB does not require internet access to add custom basemaps from an MBTiles file.

Access Terrain
By default, the geographic globe uses terrain data hosted by MathWorks and derived from the
GMTED2010 model by the USGS and NGA. You need an active internet connection to access this
terrain data, and you cannot download it.
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To work offline or to improve terrain responsiveness, add custom terrain from DTED files using the
addCustomTerrain function. You do not need an active internet connection to add or use custom
terrain.

Alternatively, you can set the Terrain property of the geographic globe object to 'none'.

Specify Basemaps and Terrain
To specify a basemap for a geographic globe, you can either:

• Use the geobasemap function. Specify the geographic globe as the first argument.

uif = uifigure;
g = geoglobe(uif);
geobasemap(g,'streets')

• Set the Basemap property of the GeographicGlobe object. You can set this property by using a
name-value pair or by using dot notation.

uif = uifigure;
g = geoglobe(uif,'Basemap','streets');
g.Basemap = 'topographic';

To specify terrain for the geographic globe, set the Terrain property of the GeographicGlobe
object. You can set this property by using a name-value pair or by using dot notation.

uif = uifigure;
g = geoglobe(uif,'Terrain','none');
g.Terrain = 'gmted2010';

See Also
geoglobe | geobasemap | addCustomTerrain | addCustomBasemap

More About
• “Use Basemaps in Offline Environments” on page 6-71
• “System Requirements for Graphics”
• “Resolving Low-Level Graphics Issues”
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Create Interactive Basemap Picker
Interactively change the basemap of a geographic globe by adding a drop-down menu to the figure.

First, create a program file called basemapPicker.m. Within the program file:

• Create a geographic globe in a figure created using the uifigure function.
• Specify a position for the menu. In this example, the values of x, y, w, and h position the menu in

the upper-right corner of the figure window.
• Specify the basemaps to include in the menu.
• Create the menu. Use a ValueChangedFcn callback that executes when you make a selection

from the menu. The callback changes the basemap using the geobasemap function.
• Write custom code to reposition the menu when you change the size of the figure. To do this,

disable automatic resizing of the menu. Then, create custom behavior by defining a
SizeChangedFcn callback. The repositionDropdown function repositions the menu, so that it
stays in the upper-right corner of the figure.

function basemapPicker
    uif = uifigure;
    gl = geoglobe(uif);
   
    x = 0.8;
    y = 0.9;
    w = 0.2;
    h = 0.1;
    uifW = uif.Position(3);
    uifH = uif.Position(4);
    pos = [x*uifW y*uifH w*uifW h*uifH];

    basemaps = ["satellite" "streets" "streets-light" "streets-dark" ...
                "landcover" "darkwater" "grayland" "bluegreen" ...
                "grayterrain" "colorterrain"];

    dd = uidropdown(uif,'Position',pos,'Items',basemaps);
    dd.ValueChangedFcn = @(src,eventdata)geobasemap(gl,src.Value);

    uif.AutoResizeChildren = 'off';
    uif.SizeChangedFcn = @(src,eventdata)repositionDropdown(dd,x,y,w,h);
end

function repositionDropdown(dd,x,y,w,h)
    fig = dd.Parent;
    uifW = fig.Position(3);
    uifH = fig.Position(4);
    dd.Position = [x*uifW y*uifH w*uifW h*uifH];
end

Run the program file. Change the basemap to 'colorterrain' using the drop-down menu.
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See Also
geoglobe | geobasemap | uidropdown

More About
• “Create Callbacks for Graphics Objects”
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Visualize Aircraft Line-of-Sight over Terrain

This example shows how to compute and visualize the line-of-sight visibility of an aircraft from a
ground location over terrain. First, import terrain data for a region and apply it to a 3-D geographic
globe. Then, perform point-to-point visibility analysis from a ground location to a simulated flight
path, and display the results on a 3-D geographic globe. Finally, perform point-to-area visibility
analysis from the ground location corresponding to aircraft flying at constant altitude, and display the
results on a 2-D geographic axes.

Use line-of-sight analysis for ground-to-air scenarios where unobstructed visibility is important, such
as for radar surveillance, communications, and UAV path planning. This example applies the analysis
to radar surveillance for an airport.

Import Terrain Data

Specify a DTED-format terrain file to use for data analysis and 3-D visualization. The terrain file was
downloaded from the "SRTM Void Filled" data set available from the United States Geological Survey
(USGS).

dtedfile = "n39_w106_3arc_v2.dt1";
attribution = "SRTM 3 arc-second resolution. Data available from the U.S. Geological Survey.";

Import DTED file data into the workspace as an array and a geographic raster reference object,
specifying the return type as double so that the data works with all analysis functions.

[Zterrain,Rterrain] = readgeoraster(dtedfile,"OutputType","double");

View the geographic limits and sample resolution of the terrain data by accessing properties of the
geographic raster reference object. The limits for the file correspond to the region around Boulder,
Colorado, US, and the resolution corresponds to the DTED level-1 format, which has sample
resolution of 3 arc seconds, or about 90 meters.

latlim = Rterrain.LatitudeLimits;
lonlim = Rterrain.LongitudeLimits;
latspc = Rterrain.SampleSpacingInLatitude;
lonspc = Rterrain.SampleSpacingInLongitude;
disp("Latitude limits of terrain: " + mat2str(latlim) + newline + ...
    "Longitude limits of terrain: " + mat2str(lonlim) + newline + ...
    "Terrain resolution in latitude: " + latspc*3600 + " arc seconds" + newline + ...
    "Terrain resolution in longitude: " + lonspc*3600 + " arc seconds")

Latitude limits of terrain: [39 40]
Longitude limits of terrain: [-106 -105]
Terrain resolution in latitude: 3 arc seconds
Terrain resolution in longitude: 3 arc seconds

Visualize Aircraft Trajectory Line-of-Sight on a 3-D Map

Create Geographic Globe with Custom Terrain

Add custom data with the DTED file for use with 3-D visualization.

addCustomTerrain("southboulder",dtedfile,"Attribution",attribution)

Specify the custom terrain with a new geographic globe.
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fig = uifigure;
g = geoglobe(fig,"Terrain","southboulder");

View Radar Ground Location

Define a radar ground location at Rocky Mountain Metropolitan Airport. The radar is mounted on a
tower 10 meters above the ground. The radar altitude is the sum of the ground elevation and the
radar tower height, referenced to mean sea level.

rdrlat = 39.913756;
rdrlon = -105.118062;
rdrtowerht = 10;
rdralt = 1717 + rdrtowerht;

Plot the radar location on the geographic globe.

geoplot3(g,rdrlat,rdrlon,rdralt,"co", ...
    "LineWidth",6, ...
    "MarkerSize",1)

Simulate Aircraft Trajectory

Simulate the trajectory of an aircraft circling over the mountains.

Define the center location of a circling aircraft.
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tlat0 = 39.80384;
tlon0 = -105.49916;
tht0 = 3000;

Define trajectory waypoints for the aircraft using east-north-up (ENU) Cartesian coordinates. Specify
a curve with a radius of 5 km (5000 m) and a vertical offset of 1 km (1000 m) over 1.5 revolutions.
Then, convert the ENU coordinates to geodetic coordinates that are referenced to the WGS84
ellipsoid.

azs = 1:540;
r = 5000;
[X,Y] = pol2cart(deg2rad(azs),r);
Z = linspace(0,1000,numel(azs));
wgs84 = wgs84Ellipsoid;
[tlat,tlon,tht] = enu2geodetic(X,Y,Z,tlat0,tlon0,tht0,wgs84);

View Aircraft Trajectory over Terrain

Plot the aircraft trajectory on the geographic globe. The default view, or camera position, is overhead
and oriented down.

hold(g,"on")
traj = geoplot3(g,tlat,tlon,tht,"y", ...
    "HeightReference","ellipsoid", ...
    "LineWidth",3);

View the 3-D terrain and radar location from a distance by changing the camera position and rotation
angles.
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campos(g,39.77114,-105.62662,6670)
camheading(g,70)
campitch(g,-12)

Compute Line-of-Sight Visibility with Aircraft Trajectory

Compute line-of-sight visibility with the los2 function and the DTED data.

The los2 function supports either orthometric height (height above mean sea level) or height above
ground level. Convert the aircraft trajectory heights from ellipsoidal height to orthometric height.
Then, compute the line-of-sight from the airport radar location to each aircraft trajectory waypoint
and convert the results to a logical array.

numwaypts = numel(tlat);
isvis = zeros(1,numwaypts);
talt = tht - egm96geoid(tlat,tlon);
for k = 1:numwaypts
    isvis(k) = los2(Zterrain,Rterrain,rdrlat,rdrlon,tlat(k),tlon(k),rdralt,talt(k),"MSL","MSL");
end
isvis = logical(isvis);

Note that los2 calculates line-of-sight visibility assuming the data is referenced to a spherical Earth,
whereas the data is actually referenced to the WGS84 ellipsoid, and as a result there may be minor
discrepancies. The line-of-sight calculation also corresponds to optical line-of-sight and does not
account for refraction through the atmosphere.
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Visualize Line-of-Sight Visibility over Terrain

Plot the line-of-sight visibility. Use green markers where the aircraft is visible from the airport and
magenta markers where it is not visible.

delete(traj)
geoplot3(g,tlat(isvis),tlon(isvis),tht(isvis),"og", ...
    "HeightReference","ellipsoid", ...
    "LineWidth",2, ...
    "MarkerSize",1)
geoplot3(g,tlat(~isvis),tlon(~isvis),tht(~isvis),"om", ...
    "HeightReference","ellipsoid", ...
    "LineWidth",2, ...
    "MarkerSize",1)

View the line-of-sight plot from the perspective of the airport. Get the geodetic coordinates of the
position that is 900 meters east, 200 meters north, and 100 meters up from the radar location. Then,
set the camera position and rotation angles. The green markers appear in view, but the magenta
markers are either completely or partially obstructed by terrain.

rdrht = rdralt + egm96geoid(rdrlat,rdrlon);
[camlat,camlon,camht] = enu2geodetic(900,200,100,rdrlat,rdrlon,rdrht,wgs84);
campos(g,camlat,camlon,camht)
camheading(g,-110)
campitch(g,0)
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Visualize Aircraft Line-of-Sight Visibility Contours on a 2-D Map

The previous sections performed point-to-point line-of-sight analysis and visualization from a radar
location to an aircraft trajectory. Now perform point-to-area line-of-sight analysis and visualization
from the same radar location over the terrain region. The visualization displays the edge of visibility
for an aircraft flying at constant altitude.

Plot Radar Location and Terrain Limits on a 2-D Map

Plot the radar location in a new figure with a topographic 2-D map.

figure
geoplot(rdrlat,rdrlon,"co", ...
    "LineWidth",6, ...
    "MarkerSize",3, ...
    "DisplayName","Radar location")
geobasemap topographic
gx = gca;
gx.InnerPosition = gx.OuterPosition;

Display the limits of the custom terrain as a rectangle on the map.

latmin = latlim(1);
latmax = latlim(2);
lonmin = lonlim(1);
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lonmax = lonlim(2);
hold on
geoplot([latmin latmin latmax latmax latmin],[lonmin lonmax lonmax lonmin lonmin], ...
    "LineWidth",1, ...
    "Color","k", ...
    "DisplayName","Terrain limits")

Display a legend in the northwest corner.

legend("Location","northwest")

Plot Visibility Contours for Aircraft Flying at Constant Altitude

Specify three altitudes above mean sea level for the aircraft. For each altitude:

• Compute the viewshed using the radar location as the observer. The viewshed defines the area
that has line-of-sight visibility.

• Find the edge of aircraft visibility by computing contours from the viewshed data.
• Remove small contour segments.
• Plot the contours on the geographic axes.

tgtalts = [3000 4000 5000];

minVertices = 10;
cfig = figure("Visible","off"); % Suppress contour plot using invisible figure
cax = axes("Parent",cfig);
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for tgtalt = tgtalts
    vis = viewshed(Zterrain,Rterrain,rdrlat,rdrlon,rdralt,tgtalt,"MSL","MSL");
    
    C = contourm(vis,Rterrain,"LevelList",1,"Parent",cax);
    clat = C(2,:);
    clon = C(1,:);
    
    clats = [];
    clons = []; 
    k = 1;   
    while k < size(C,2)
        numVertices = clat(k);
        if numVertices > minVertices % Do not plot small segments 
            clats = [clats clat(k+1:k+numVertices) NaN]; %#ok<AGROW> 
            clons = [clons clon(k+1:k+numVertices) NaN]; %#ok<AGROW> 
        end
        k = k + numVertices + 1;
    end
    
    geoplot(gx,clats,clons,"LineWidth",2, ...
        "DisplayName", "Aircraft: " + string(tgtalt) + " m");
end

The contours appear primarily to the west of the radar location over the mountains. The contours do
not appear in other directions because visibility is not constrained by the terrain in those directions
within the terrain data limits.
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If the radar is constrained by line-of-sight visibility, then the contours correspond to radar coverage
regions for varying altitude, where the nearest contour to the radar corresponds to radar coverage
for an aircraft flying at 3000 meters and the furthest contour corresponds to radar coverage for an
aircraft flying at 5000 meters.

As with los2, the viewshed function calculates line-of-sight visibility assuming the data is
referenced to a spherical Earth, whereas the data is actually referenced to the WGS84 ellipsoid, and
as a result there may be minor discrepancies. The line-of-sight calculation also corresponds to optical
line-of-sight and does not account for refraction through the atmosphere.

Clean Up

Clean up by closing the geographic globe and removing the imported terrain data.

if isvalid(fig)
    close(fig)
end
removeCustomTerrain("southboulder")

See Also
Functions
addCustomTerrain | geoplot3 | geoglobe | los2 | campos | readgeoraster

Objects
GeographicPostingsReference

More About
• “Find Ellipsoidal Height from Orthometric Height” on page 3-42
• “Find Geospatial Raster Data” on page 2-79
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Visualize UAV Flight Path on 2-D and 3-D Maps

This example visualizes a simulated unmanned aerial vehicle (UAV) flight from the Mauna Loa
Baseline Observatory to the top of the Mauna Loa Volcano in Hawaii. First, display the track on
geographic axes and a geographic globe. Then, synchronize the view and visualize the flight path by
using camera navigation functions. Finally, view the top of the Mauna Loa volcano as a panorama.

Visualize Region of Interest in 2-D

The use of UAVs to track characteristics of changing topology, gasses, and ash clouds around
volcanos is becoming an important area of research for scientists [1]. A UAV can travel in regions that
are hazardous for a volcanologist. Simulating the flight path of the UAV prior to sending it out on a
mission can assist with understanding the topology and terrain. To gain an overview and 2-D
perspective of the region, view the locations of the Mauna Loa Baseline Observatory and the Mauna
Loa Volcano in a geographic axes.

Get Coordinates of Mauna Loa Baseline Observatory

Specify the coordinates of the Mauna Loa Baseline Observatory [2]. The height of the observatory is
in meters above mean sea level (MSL).

obslat = 19.5362;
obslon = -155.5763;
obsH = 3397.00;

Get Coordinates of Mauna Loa Volcano

Specify the coordinates of the top of Mauna Loa [3]. The height of the volcano is orthometric and is in
meters.

mllat = 19.475;
mllon = -155.608;
mlH = 4169;

View Mauna Loa Baseline Observatory and Mauna Loa Volcano in 2-D

For a 2-D perspective of the region, use geoaxes and geoplot to plot the location of the observatory
and the top of the volcano.

figure
geoaxes("Basemap","satellite","ZoomLevel",12)
hold on
geoplot(obslat,obslon,"ow","MarkerSize",10,"MarkerFaceColor","magenta", ...
    "DisplayName","Mauna Loa Observatory")
geoplot(mllat,mllon,"ow","MarkerSize",10,"MarkerFaceColor","blue", ...
    "DisplayName","Mauna Loa Volcano")
legend
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Synchronize View of Mauna Loa Baseline Observatory in 2-D and 3-D

Use the geographic axes to view the observatory in 2-D and the geographic globe to view the
observatory in 3-D.

Create Geographic Axes and Geographic Globe in Same Figure

Set up a 2-D and 3-D map display by creating geographic axes and a geographic globe in the same UI
figure. To view more of the 2-D map, set the InnerPosition of the geographic axes to its
OuterPosition. To view both map displays with the same basemap, set the basemap of the
geographic axes to "satellite".

figpos = [1000 500 800 400];
uif = uifigure("Position",figpos);
ug = uigridlayout(uif,[1,2]);
p1 = uipanel(ug);
p2 = uipanel(ug);
gx = geoaxes(p1,"Basemap","satellite"); 
gg = geoglobe(p2); 
gx.InnerPosition = gx.OuterPosition;
gg.Position = [0 0 1 1];
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View Observatory in 2-D

View the observatory from 200 meters above the terrain. Control the view of the geographic axes by
changing its map center and zoom level. You can synchronize the view of the geographic axes with
the view of the geographic globe by converting the camera height of the globe to a zoom level for the
axes. Calculate an approximate zoom level from terrain height by using the heightToZoomLevel
local function.

heightAboveTerrain = 200;
gx.MapCenter = [obslat, obslon];
zoomLevel = heightToZoomLevel(heightAboveTerrain, obslat);
gx.ZoomLevel = zoomLevel;

View Observatory in 3-D

Control the view of the geographic globe by changing the position of the camera. The campos
function requires you to specify ellipsoidal height (relative to the WGS84 ellipsoid) instead of
orthometric height (relative to mean sea level). Convert the height of the observatory to ellipsoidal
height. All heights are in meters.

N = egm96geoid(obslat, obslon);
obsh = obsH + N;
ellipsoidalHeight = obsh + heightAboveTerrain;
campos(gg,obslat,obslon,ellipsoidalHeight)
drawnow
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Import Flight Track Data and Calculate Heading and 3-D Distance

Import the simulated flight track from the Mauna Loa Baseline Observatory to the top of the Mauna
Loa volcano. The file contains the latitudes, longitudes, and altitudes of the UAV path, referenced to
mean sea level.

T = readgeotable("sample_uavtrack.gpx","Layer","track_points");
tlat = T.Shape.Latitude';
tlon = T.Shape.Longitude';
talt = T.Elevation';

Calculate Flight Headings

Calculate the UAV heading at each track point using the azimuth function.

wgs84 = wgs84Ellipsoid;
theading = azimuth(tlat(1:end-1),tlon(1:end-1),tlat(2:end),tlon(2:end),wgs84);
theading = [theading(1);theading(:)];

Calculate 3-D Distances

Calculate the cumulative distance for the UAV flight track. The distance function does not take into
account changes in elevation or altitude. In order to calculate the distance the UAV moves from point
to point in 3-D, you need to work in geocentric Cartesian coordinates (X, Y, Z). Compute the point-to-
point offset components (in meters) using the ecefOffset function. The altitude data of the UAV
flight is referenced to the mean sea level. To use the ecefOffset function, the heights must be
referenced to the ellipsoid. Convert the orthometric heights of the flight track to ellipsoidal height
(relative to the WGS84 ellipsoid). All heights are in meters.

N = egm96geoid(tlat,tlon);
h = talt + N;

Compute distance offsets.
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lat1 = tlat(1:end-1);
lat2 = tlat(2:end);
lon1 = tlon(1:end-1);
lon2 = tlon(2:end);
h1 = h(1:end-1);
h2 = h(2:end);
[dx,dy,dz] = ecefOffset(wgs84,lat1,lon1,h1,lat2,lon2,h2);

Calculate the Euclidean distance between each pair of adjacent points using the hypot function. The
distance is in meters.

distanceIncrementIn3D = hypot(hypot(dx, dy), dz);

Compute cumulative distance in 3-D and the total distance in meters.

cumulativeDistanceIn3D = cumsum(distanceIncrementIn3D);
totalDistanceIn3D = sum(distanceIncrementIn3D);
fprintf("Total UAV track distance is %f meters.\n",totalDistanceIn3D)

Total UAV track distance is 8931.072120 meters.

Assign a variable for the cumulative distance to be used for plotting the animation.

tdist = [0 cumulativeDistanceIn3D];

Plot Flight Line from Mauna Loa Baseline Observatory to top of Mauna Loa Volcano

Plot the simulated flight line from the Mauna Loa Baseline Observatory to the top of the Mauna Loa
volcano.

Plot the flight line. By default, the geographic globe places the line at the center of the display. The
view of the geographic axes will not change because you have previously set the MapCenter and
ZoomLevel.

geoplot3(gg,tlat,tlon,talt,"c","LineWidth",2,"HeightReference","geoid")
ptrack = geoplot(gx,tlat,tlon,"c","LineWidth",2);

Set the map center and zoom level to be consistent with the 3-D view by converting the camera
height for the globe to the zoom level for the axes.

[clat,clon,cheight] = campos(gg);
gx.MapCenter = [clat,clon];
gx.ZoomLevel = heightToZoomLevel(cheight, clat);
drawnow
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Set Initial View from Mauna Loa Baseline Observatory to Top of Mauna Loa Volcano

View the flight line from the start position by setting the camera position to the first coordinate of the
track. For a better perspective, set the camera height to 75 meters about the height of the track.
View straight down to the observatory by setting the camera pitch to -90. View the track by setting
the heading to the third element of the calculated heading array since the first two points of the track
are the same location and the calculated heading for those locations is 0.

campos(gg,tlat(1),tlon(1))
camheight(gg,talt(1) + 75)
campitch(gg,-90)
camheading(gg,theading(3))

Show the location of the UAV in the 2-D map, and the start and end locations of the flight track with
markers. Create a legend for the UAV track and markers.

hold(gx,"on")
marker = geoplot(gx,tlat(1),tlon(1),"ow","MarkerSize",10,"MarkerFaceColor","k");
mstart = geoplot(gx,tlat(1),tlon(1),"ow","MarkerSize",10,"MarkerFaceColor","magenta");
mend = geoplot(gx,tlat(end),tlon(end),"ow","MarkerSize",10,"MarkerFaceColor","blue");

marker.DisplayName = "Current Location";
mstart.DisplayName = "Start Location";
mend.DisplayName = "End Location";
ptrack.DisplayName = "UAV Track";
legend(gx)

View the topology of the region by changing the basemap.

gx.Basemap = "topographic";

View the coordinate location, altitude, and heading of the UAV by using a custom data tip that
corresponds with the location of the UAV. Include the distance from the observatory.

5 Making Three-Dimensional Maps

5-86



dt = datatip(ptrack,"DataIndex",1,"Location","southeast");
dtrow = dataTipTextRow("Distance",tdist);
dtrow(end+1) = dataTipTextRow("Altitude",talt);
dtrow(end+1) = dataTipTextRow("Heading",theading);
ptrack.DataTipTemplate.DataTipRows(end+1:end+3) = dtrow;

Fly from Mauna Loa Baseline Observatory to Top of Mauna Loa Volcano

Animate a flight from the Mauna Loa Baseline Observatory to the top of the Mauna Loa volcano. View
the location of the UAV on the 2-D map by animating a marker and data tip. Animate the 3-D flight by
setting the camera position. For a better view of the UAV track, set the camera height to 100 meters
above the flight track. Update the camera pitch value for a better view of the flight track as the UAV
navigates to the top of the volcano. To view the current location, altitude, and heading of the UAV,
update the data tip with the current index.

pitch = -2.7689;
campitch(gg,pitch)

for k = 2:(length(tlat)-1)    
    campos(gg,tlat(k),tlon(k))
    camheight(gg,talt(k)+100)
    camheading(gg,theading(k))
    
    set(marker,"LatitudeData",tlat(k),"LongitudeData",tlon(k));
    dt.DataIndex = k;
    
    drawnow
    pause(.25)
end

campos(gg,tlat(end),tlon(end),talt(end)+100)
dt.DataIndex = length(tlat);
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View a 360-Degree Panorama from Top of Mauna Loa Volcano

View a 360-degree panorama from the top of Mauna Loa by rotating the camera heading 360
degrees. Rotate clockwise with a step size of 5-degrees and start at the next 5 degree step. Update
the heading data tip.

initialHeading = camheading(gg);
increment = 5;
initialHeading = initialHeading + (increment - mod(initialHeading,increment));

filename = 'panoramic.gif';
for degree = initialHeading:increment:initialHeading+360
    heading = mod(degree,360);
    ptrack.DataTipTemplate.DataTipRows(end).Value(dt.DataIndex) = heading;
    camheading(gg,heading);
    drawnow
end

5 Making Three-Dimensional Maps

5-88



Local Functions

Convert Height (in meters above WGS84 ellipsoid) to Zoom Level

function zoomLevel = heightToZoomLevel(height, lat)
    earthCircumference = 2 * pi * 6378137;
    zoomLevel = log2((earthCircumference *cosd(lat)) / height) + 1;
    zoomLevel = max(0, zoomLevel);
    zoomLevel = min(19, zoomLevel);
end
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Properties
GeographicAxes Properties

More About
• “Find Ellipsoidal Height from Orthometric Height” on page 3-42
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Customizing and Printing Maps

• “Add Labels and Annotations to Map Axes” on page 6-2
• “Customize Appearance of Map Axes” on page 6-10
• “Create Map of Quadrangle Using Cartographic Map Layout” on page 6-19
• “The Map Frame” on page 6-27
• “Map and Frame Limits” on page 6-29
• “Map Limit Properties” on page 6-30
• “The Map Grid” on page 6-45
• “Inset Maps” on page 6-48
• “Customize Appearance of Vector Basemaps” on page 6-51
• “Create Common Plots over Basemap Images” on page 6-58
• “Change Projection of Basemap Image” on page 6-66
• “Use Basemaps in Offline Environments” on page 6-71
• “Display Data over Basemaps When Internet Access Is Intermittent” on page 6-82
• “Thematic Maps” on page 6-85
• “Create Choropleth Map from Table Data” on page 6-88
• “Create Classification Map from Table Data” on page 6-92
• “Create Choropleth Map of Population Density” on page 6-96
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Add Labels and Annotations to Map Axes

Map axes objects are a type of axes object, similar to axes objects, geographic axes objects, and polar
axes objects. As a result, you can use map axes with many MATLAB® graphics functions. This
example shows how to convey information about your map by adding a title, a legend, text, and data
tips.

By default, most plotting functions reset many of the axes properties. This example retains the plots
and customizations in the axes by setting the hold state of the axes to on. Alternatively, you can
customize the axes after plotting.

Create Map

Create a map using a projected CRS that is appropriate for Southeast Asia. Create the projcrs
object using the ESRI code 102030.

figure
p = projcrs(102030,Authority="ESRI");
newmap(p)
hold on

Provide geographic context for the map by displaying a subset of a shapefile containing world land
areas. Avoid displaying the land areas in the legend by setting the HandleVisibility property to
"off".

land = readgeotable("landareas.shp");
subland = land([1:2,5:18,20:end],:);
geoplot(subland,HandleVisibility="off",FaceColor=[0.7 0.7 0.7],EdgeColor=[0.65 0.65 0.65])

Display world rivers using blue lines.

rivers = readgeotable("worldrivers.shp");
geoplot(rivers,Color=[0 0.4470 0.7410])

Display the locations of tsunamis events using a scatter chart. Prepare to add data tips to the scatter
chart by returning the Scatter object as s.

tsunamis = readgeotable("tsunamis.shp",CoordinateSystemType="geographic");
lat = tsunamis.Shape.Latitude;
lon = tsunamis.Shape.Longitude;
s = geoscatter(lat,lon,"filled",MarkerFaceColor=[0.8500 0.3250 0.0980]);

Adjust the geographic limits.

geolimits([-20 20],[90 170])
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Add Title

Add a title using the title function.

title("Map of Southeast Asia")
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Add Legend

Add a legend with descriptions for the lines and scatter chart. Specify the legend labels as inputs to
the legend function. For more information about adding legends to axes, see “Add Legend to Graph”.

legend(["Rivers", "Tsunami Events"],Location="northeast")
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Change Font Size

MapAxes objects have properties that you can use to customize the appearance of the axes. For
example, the FontSize property controls the font size of the title, tick labels, and scale bar, as well
as any legends or color bars associated with the axes.

Access the current MapAxes object and then set the FontSize property.

mx = gca;
mx.FontSize = 12;
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To change the font size of only the title, set the FontSize property of the title.

mx.Title.FontSize = 10;
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Add Text

Add text to the map. Specify the location for the text using latitude-longitude coordinates. For more
information about adding text to axes, see “Add Text to Chart”.

text(10.2,126.5,"Philippines")
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Add Data Tips

Display the coordinates of a tsunami event by adding a data tip. Specify the scatter chart and
latitude-longitude coordinates as inputs to the datatip function.

dt = datatip(s,-11.1,118.4,Location="southeast");

Display the cause of the tsunami event in the data tip by adding a new row to the data tip template.
For more information about customizing data tips, see “Create Custom Data Tips”.

dtRow = dataTipTextRow("Cause",tsunamis.Cause);
s.DataTipTemplate.DataTipRows(end+1) = dtRow;
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See Also
Functions
title | subtitle | legend | text | datatip

Properties
MapAxes Properties

Related Examples
• “Create Common Plots Using Map Axes” on page 4-7
• “Customize Appearance of Map Axes” on page 6-10
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Customize Appearance of Map Axes

A map axes object is a type of axes object, similar to axes objects, geographic axes objects, and polar
axes objects. This example shows how to customize the map axes by changing the tick label format,
the geographic limits, the appearance of the graticule line, and the colors of fonts.

By default, most plotting functions reset many of the axes properties. As a result, this example
customizes the properties of the axes after plotting the data. To customize map axes before plotting
the data, set the hold state of the axes to on by using the hold function.

Create Map

Import a shapefile of hydrographic data into the workspace as a geospatial table. The table
represents the data using polygon shapes in projected coordinates. Extract a row that contains data
about a pond.

hydro = readgeotable("concord_hydro_area.shp");
pond = hydro(14,:);

Create a map using the projected coordinate reference system from the data file. Then, plot the pond
polygon and add a title.

figure
newmap(pond.Shape.ProjectedCRS)

geoplot(pond)
title("Hydrographic Data")
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Change Tick Format

Change the format of the tick labels to decimal degrees by using the geotickformat function.

geotickformat dd
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Change Geographic Limits

Change the latitude and longitude limits by using the geolimits function.

geolimits([42.4618 42.4663],[-71.4033 -71.3955])
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Change Appearance of Graticule Lines

MapAxes objects have properties that you can use to customize the appearance of the axes. For
example, the GraticuleColor, GraticuleLineStyle, GraticuleLineWidth, and
GraticuleAlpha properties control the color, line style, line width, and transparency of the
graticule lines.

Access the MapAxes object and then change the properties of the graticule lines.

mx = gca;
mx.GraticuleColor = [0.5 0.5 0];
mx.GraticuleLineStyle = "--";
mx.GraticuleLineWidth = 2;
mx.GraticuleAlpha = 0.3;
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Remove the graticule lines by setting the GraticuleLineStyle property to "none".

mx.GraticuleLineStyle = "none";
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Change Font Color

The FontColor property controls the font color for the title, tick labels, and scale bar. Change the
font color of the map axes object.

mx.FontColor = [0 0.4470 0.7410];
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To change the color of only the title, set the Color property of the title.

mx.Title.Color = "k";
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To change the font color for only the scale bar, set the FontColor property of the scale bar.

mx.Scalebar.FontColor = [0.8500 0.3250 0.0980];
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See Also
Functions
newmap | geoplot | geolimits | geotickformat

Properties
MapAxes Properties

Related Examples
• “Create Common Plots Using Map Axes” on page 4-7
• “Add Labels and Annotations to Map Axes” on page 6-2

6 Customizing and Printing Maps

6-18



Create Map of Quadrangle Using Cartographic Map Layout

This example shows how to display data in map axes using a cartographic map layout. A cartographic
map layout displays only the data within the quadrangle specified by the
CartographicLatitudeLimits and CartographicLongitudeLimits properties of the map axes
object. Cartographic map layouts are useful for creating static maps and for preparing maps for
publications.

The default map layout is appropriate for most data visualization and exploration workflows. To
change the geographic limits of a map in the default layout, use the geolimits function instead of
the CartographicLatitudeLimits and CartographicLongitudeLimits properties.

By default, most plotting functions reset many of the axes properties. As a result, this example
customizes the properties of the axes after plotting the data. To customize map axes before plotting
the data, set the hold state of the axes to on by using the hold function.

Use Default Cartographic Limits

Create a map in a cartographic map layout using the cartographic limits chosen by the map axes
object.

Create Map Axes

Create a projected coordinate reference system (CRS) object that is appropriate for Antarctica. Use
the WGS 84 / Antarctic Polar Stereographic projected CRS, which has the EPSG code 3031. Then,
create a map axes object that uses the projected CRS.

figure
p1 = projcrs(3031);
mx1 = newmap(p1);
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By default, the map displays data in the box specified by the Position property of the axes object.
For many projected CRSs, this box includes the quadrangle defined by the
CartographicLatitudeLimits and CartographicLongitudeLimits properties and some areas
surrounding the quadrangle. The axes object does not display data where the projection has
undefined numeric results or extreme map distortion.

Read and Clip Data

Read a shapefile that contains world land areas into the workspace as a geospatial table. The table
represents the land areas using polygon shapes in geographic coordinates.

land = readgeotable("landareas.shp");

Query the cartographic latitude and longitude limits stored in the map axes object. When you create a
map axes object, the object sets the CartographicLatitudeLimits and
CartographicLongitudeLimits properties using the area of use for the projected CRS.

latlim1 = mx1.CartographicLatitudeLimits

latlim1 = 1×2

   -90   -60

lonlim1 = mx1.CartographicLongitudeLimits

lonlim1 = 1×2
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  -180   180

Clip the shapes to the cartographic latitude and longitude limits.

clipped1 = geoclip(land.Shape,latlim1,lonlim1);

Display Data

Display the clipped shapes on the map axes object. Then, change the map layout to cartographic. By
default, the map axes object hides the scale bar when the map outline is curved.

geoplot(clipped1)
mx1.MapLayout = "cartographic";

Add a title and subtitle.

title("Antarctica")
subtitle(p1.Name)

Export Map

Export the map to a PNG file. Specify the resolution of the image as 600 dots per inch.

exportgraphics(mx1,"antarctica.png",Resolution=600)
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Change Cartographic Limits

Create a map in a cartographic map layout using cartographic limits that you specify. When you
change the cartographic limits, the map axes object does not validate whether the limits are valid for
the projected CRS. Use caution when changing the cartographic limit properties, for example, when
specifying limits that are wider than the area of use for the projected CRS.

Create Map

Create a projected CRS object that is appropriate for Australia. Use the GDA94 / Geoscience Australia
Lambert projected CRS, which has the EPSG code 3112. Then, create a map axes that uses the
projected CRS.

figure
p2 = projcrs(3112);
mx2 = newmap(p2);
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By default, the map displays data within the box specified by the Position property of the axes
object. For many projected CRSs, this box includes the quadrangle defined by the
CartographicLatitudeLimits and CartographicLongitudeLimits properties and some areas
surrounding the quadrangle. The axes object does not display data where the projection has
undefined numeric results or extreme map distortion.

Read and Clip Data

Read a shapefile that contains world land areas into the workspace as a geospatial table. The table
represents the land areas using polygon shapes in geographic coordinates.

land = readgeotable("landareas.shp");

Query the cartographic latitude and longitude limits stored in the map axes object. When you create a
map axes object, the object sets the CartographicLatitudeLimits and
CartographicLongitudeLimits properties using the area of use for the projected CRS.

mx2.CartographicLatitudeLimits

ans = 1×2

  -43.7000   -9.8600

mx2.CartographicLongitudeLimits

ans = 1×2
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  112.8500  153.6900

Specify latitude and longitude limits that are wider than the limits stored in the map axes object.

latlim2 = [-50 10];
lonlim2 = [88 180];

Clip the shapes to the wider limits.

clipped2 = geoclip(land.Shape,latlim2,lonlim2);

Display Data

Display the clipped shapes on the map axes object.

geoplot(clipped2)

Change the cartographic latitude and longitude limits to the wider limits. Then, change the map
layout to cartographic. By default, the map axes object hides the scale bar when the map outline is
curved.

mx2.CartographicLatitudeLimits = latlim2;
mx2.CartographicLongitudeLimits = lonlim2;
mx2.MapLayout = "cartographic";

Add a title and subtitle.

title("Australia and Surrounding Region")
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Export Map

Export the map to a PNG file. Specify the resolution of the image as 600 dots per inch.

exportgraphics(mx2,"australia.png",Resolution=600)

Tips

Some projected CRSs do not indicate the area of use. When a projected CRS does not indicate the
area of use, the map axes object sets the CartographicLatitudeLimits property to [-90 90]
and set the CartographicLongitudeLimits property to [-180 180].

See Also
Functions
newmap | geoplot | exportgraphics

Objects
projcrs

Properties
MapAxes Properties
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Related Examples
• “Add Labels and Annotations to Map Axes” on page 6-2
• “Customize Appearance of Map Axes” on page 6-10
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The Map Frame
The map frame of an axesm-based map is the outline of the limits of a map, often in the form of a box,
the "edge of the world," so to speak. The frame is displayed if the axesm-based map property Frame
is set to 'on'. This can be accomplished upon axesm-based map creation with axesm, or later with
setm, or with the direct command framem on. The frame is geographically defined as a latitude-
longitude quadrangle that is projected appropriately. For example, on a map of the world, the frame
might extend from pole to pole and a full 360° range of longitude. In appearance, the frame would
take on the characteristic shape of the projection. The examples below are full-world frames shown in
four very different projections.

Full-World Map Frames

As a map object, each of the previously displayed frames is identical; however, the selection of a
display projection has varied their appearance.

You can manipulate properties beyond the latitude and longitude limits of the frame. Frame
properties are established upon axesm-based map object creation; you can modify them subsequently
with the setm and the framem functions. The command framem alone is a toggle for the Frame
property, which controls the visibility of the frame. You can also call framem with property names and
values to alter the appearance of the frame:

framem('FlineWidth',4,'FEdgeColor','red')

The frame is actually a patch with a default face color set to 'none' and a default edge color of
black. You can alter these axesm-based map properties by manipulating the FFaceColor and
FEdgeColor properties. For example, the command

setm(gca,'FFaceColor','cyan')

makes the background region of your display resemble water. Since the frame patch is always the
lowest layer of a map display, other patches, perhaps representing land, will appear above the
"water." If an object is subsequently plotted "below" the frame patch, the frame altitude can be
recalculated to lie below this object with the command framem reset. The frame is replaced and
not reprojected.

Set the line width of the edge, which is 2 points by default, using the FLineWidth property.
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The primary advantage of displaying the map frame is that it can provide positional context for other
displayed map objects. For example, when vector data of the coasts is displayed, the frame provides
the "edge" of the world.

See the framem reference page for more details.
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Map and Frame Limits
The map and frame limits are two related axesm-based map properties that limit the map display to a
defined region. The map latitude and longitude limits define the extents of geodata to be displayed,
while the frame limits control how the frame fits around the displayed data. Any object that extends
outside the frame limits is automatically trimmed.

The frame limits are also specified differently from the map limits. The map limits are in absolute
geographic coordinates referenced to an origin at the intersection of the prime meridian and the
equator, while the frame limits are referenced to the rotated coordinate system defined by the origin
of the axesm-based map.

For all nonazimuthal projections, frame limits are specified as quadrangles ([latmin latmax] and
[longmin longmax]) in the frame coordinate system. In the case of azimuthal projections, the
frames are circular and are described by a polar coordinate system. One of the frame latitude limits
must be a negative infinity (-Inf) to indicate an azimuthal frame (think of this as the center of the
circle), while the other limit determines the radius of the circular frame (rlatmax). The longitude
limits of azimuthal frames are inconsequential, since a full circle is always displayed.

If you are uncertain about the correct format for a particular projection frame limit, you can reset the
formats to the default values using empty matrices.

Note For nonazimuthal projections in the normal aspect, the map extent is limited by the minimum
of the map limits and the frame limits; hence, the two limits will coincide after evaluation. Therefore,
if you manually change one set of limits, you might want to clear the other set to get consistent limits.
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Map Limit Properties
In many common situations, the map limit properties of axesm-based maps, MapLatLimit and
MapLonLimit, provide a convenient way of specifying your map projection origin or frame limits.
Note that these properties are intentionally redundant; you can always avoid them if you wish and
instead use the Origin, FLatLimit, and FLonLimit properties to set up your map. When they're
applicable, however, you'll probably find that it's easier and more intuitive to set MapLatLimit and
MapLonLimit, especially when creating a new axesm-based map.

You typically use the MapLatLimit and MapLonLimit properties to set up an axesm-based map with
a non-oblique, non-azimuthal projection, with its origin on the Equator. (Most of the projections
included in the Mapping Toolbox fall into this category; e.g., cylindrical, pseudo-cylindrical, conic, or
modified azimuthal.) In addition, even with a non-zero origin latitude (origin off the Equator), you can
use the MapLatLimit and MapLonLimit properties with projections that are implemented directly
rather than via rotations of the sphere (e.g., tranmerc, utm, lambertstd, cassinistd,
eqaconicstd, eqdconicstd, and polyconicstd). This list includes the projections used most
frequently for large-scale maps, such as U.S. Geological Survey topographic quadrangle maps. Finally,
when the origin is located at a pole or on the Equator, you can use the map limit properties with any
azimuthal projection (e.g., stereo, ortho, breusing, eqaazim, eqdazim, gnomonic, or
vperspec).

On the other hand, you should avoid the map limit properties, working instead with the Origin,
FLatLimit, and FLonLimit properties, when:

• You want your map frame to be positioned asymmetrically with respect to the origin longitude.
• You want to use an oblique aspect (that is, assign a non-zero rotation angle to the third element of

the "orientation vector" supplied as the Origin property value).
• You want to change your projection's default aspect (normal vs. transverse).
• You want to use a nonzero origin latitude, except in one of the special cases noted above.
• You are using one of the following projections:

• globe — No need for map limits; always covers entire planet
• cassini — Always in a transverse aspect
• wetch — Always in a transverse aspect
• bries — Always in an oblique aspect

There's no need to supply a value for the MapLatLimit property if you've already supplied one for
the Origin and FLatLimit properties. In fact, if you supply all three when calling either axesm or
setm, the FLatLimit value will be ignored. Likewise, if you supply values for Origin, FLonLimit,
and MapLonLimit, the FLonLimit value will be ignored.

If you do supply a value for either MapLatLimit or MapLonLimit in one of the situations listed
above, axesm or setm will ignore it and issue a warning. For example,

axesm('lambert','Origin',[40 0],'MapLatLimit',[20 70])

generates the warning message:

Ignoring value of MapLatLimit due to use of nonzero origin
 latitude with the lambert projection.
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It's important to understand that MapLatLimit and MapLonLimit are extra, redundant properties
that are coupled to the Origin, FLatLimit, and FLonLimit properties. On the other hand, it's not
too difficult to know how to update your axesm-based map if you keep in mind the following:

• The Origin property takes precedence. It is set (implicitly, if not explicitly) every time you call
axesm and you cannot change it just by changing the map limits. (Note that when creating a new
axesm-based map, the map limits are used to help set the origin if it is not explicitly specified.)

• MapLatLimit takes precedence over FLatLimit if both are provided in the same call to axesm
or setm, but changing either one alone affects the other.

• MapLonLimit and FLonLimit have a similar relationship.

The precedence of Origin means that if you want to reset your map limits with setm and have setm
also determine a new origin, you must set Origin to [] in the same call. For example,

setm(gca,'Origin',[],'MapLatLimit',newMapLatlim,...
   'MapLonLimit',newMapLonlim)

On the other hand, a call like this will automatically update the values of FLatLimit and
FLonLimit. Similarly, a call like:

setm(gca,'FLatLimit',newFrameLatlim,'FLonLimit',newFrameLonlim)

will update the values of MapLatLimit and MapLonLimit.

Finally, you probably don't want to try the following:

setm(gca,'Origin',[],'FLonLimit',newFrameLonlim)

because the value of FLonLimit (unlike MapLonLimit) will not affect Origin, which will merely
change to a projection-dependent default value (typically [0 0 0]).

Specify Map Projection Origin and Frame Limits Automatically

This example shows how to specify the map projection origin and frame limits of axesm-based maps
using the two map limit properties: MapLatLimit and MapLonLimit. While axesm-based maps
support properties to set these values directly, Origin, FLatLimit, and FLonLimit, it is easier and
more intuitive to use the map limit properties, especially when creating a new axesm-based map.
This example highlights the interdependency of the axesm-based map limits and the map limit
properties.

Create a map using a cylindrical projection or pseudo-cylindrical projection showing all or most of the
Earth, with the Equator running as a straight horizontal line across the center of the map. The map is
bounded by a geographic quadrangle and the projection origin is located on the Equator, centered
between the longitude limits you specify using the map projection limits.

latlim = [-80 80];
lonlim = [100 -120];
figure
axesm('robinson','MapLatLimit',latlim,'MapLonLimit',lonlim,...
    'Frame','on','Grid','on','MeridianLabel','on','ParallelLabel','on')
axis off
setm(gca,'MLabelLocation',60)
load coastlines
plotm(coastlat,coastlon)
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Check that the axesm function set the origin and frame limits based on the values you specified using
the MapLatLim and MapLonLim properties. The longitude of the origin should be located halfway
between the longitude limits of 100 E and 120 W. Since the map spans 140 degrees, adding half of
140 to the western limit, the origin longitude should be 170 degrees. The frame is centered on this
longitude with a half-width of 70 degrees and the origin latitude is on the Equator.

origin = getm(gca,'Origin')

origin = 1×3

     0   170     0

flatlim = getm(gca,'FLatLimit')

flatlim = 1×2

   -80    80

flonlim = getm(gca,'FLonLimit')

flonlim = 1×2

   -70    70
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Shift the western longitude to 40 degrees E (rather than 100 degrees) to include a little more of Asia.
Use the setm function to assign a new value to the MapLonLimit property. Note the asymmetric
appearance of the map.

setm(gca,'MapLonLimit',[40 -120])

To correct the asymmetry, shift the western longitude again, this time specifying the origin. While the
MapLatLimit and MapLonLimit properties are convenient, the values of the Origin, FLatLimit,
and FLonLimit properties take precedence. You must specify the value of the origin to achieve the
map you intended. The best way to do this is to specify an empty value for the Origin property and
let the setm command calculate the value.

setm(gca,'MapLonLimit',[40 -120],'Origin',[])
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Create Cylindrical Projection Using Map Limit Properties

This example shows how to create cylindrical projection using map limit properties.

Load the coastline data.

load coastlines

Construct a Mercator projection covering the full range of permissible latitudes with longitudes
covering a full 360 degrees starting at 60 West.

figure('Color','w')
axesm('mercator','MapLatLimit',[-90 90],'MapLonLimit',[-60 300])
axis off; 
framem on; 
gridm on; 
mlabel on; 
plabel on;
setm(gca,'MLabelLocation',60)
geoshow(coastlat,coastlon,'DisplayType','polygon')
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The previous call to axesm is equivalent to:

axesm('mercator','Origin',[0 120 0],'FlatLimit',[-90 90],'FLonLimit',[-180
180]);

You can verify this by checking the properties.

getm(gca,'Origin')

ans = 1×3

     0   120     0

getm(gca,'FLatLimit')

ans = 1×2

   -86    86

getm(gca,'FLonLimit')

ans = 1×2

  -180   180
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Note that the map and frame limits are clamped to the range of [-86 86] imposed by the read-only
TrimLat property.

getm(gca,'MapLatLimit')

ans = 1×2

   -86    86

getm(gca,'FLatLimit')

ans = 1×2

   -86    86

getm(gca,'TrimLat')

ans = 1×2

   -86    86

Create Conic Projection Using Map Limit Properties

This example shows how to create a map of the standard version of the Lambert Conformal Conic
projection covering latitudes 20 North to 75 North and longitudes covering 90 degrees starting at 30
degrees West.

Load coastline data and display it. The call to axesm above is equivalent to:
axesm('lambertstd','Origin', [0 15 0], 'FLatLimit',[20 75],FLonLimit',[-45
45])

load coastlines
figure('Color','w')
axesm('lambertstd','MapLatLimit',[20 75],'MapLonLimit',[-30 60])
axis off; 
framem on; 
gridm on; 
mlabel on; 
plabel on;
geoshow(coastlat, coastlon, 'DisplayType', 'polygon')
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Create Southern Hemisphere Conic Projection

This example shows how to create a map of the standard version of the Lambert Conformal Conic
projection into the Southern Hemisphere. The example overrides the default standard parallels and
sets the MapLatLimit and MapLonLimit properties.

Load the coastline data MAT file, coastlines.mat.

load coastlines

Display the map, setting the MapLatLimit and MapLonLimit properties.

figure('Color','w')
axesm('lambertstd','MapParallels',[-75 -15], ...
        'MapLatLimit',[-75 -20],'MapLonLimit',[-30 60])
axis off
framem on
gridm on
mlabel on
plabel on
geoshow(coastlat,coastlon,'DisplayType','polygon')
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Create North-Polar Azimuthal Projection

This example shows how to construct a North-polar Equal-Area Azimuthal projection map extending
from the Equator to the pole and centered by default on longitude 0.

Load coastline data set MAT file, coastlines.mat.

load coastlines

Create map. The call to axesm is equivalent to:
axesm('eqaazim','MLabelParallel',0,'Origin',[90 0 0],'FLatLimit',[-Inf 90]);

figure('Color','w')
axesm('eqaazim','MapLatLimit',[0 90])
axis off
framem on
gridm on
mlabel on
plabel on;
setm(gca,'MLabelParallel',0)
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Plot the coast lines.

geoshow(coastlat,coastlon,'DisplayType','polygon')
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Create South-Polar Azimuthal Projection

This example shows how to create a South-polar Stereographic Azimuthal projection map extending
from the South Pole to 20 degrees S, centered on longitude 150 degrees West. Include a value for the
Origin property in order to control the central meridian.

Load coastline data and display map.

load coastlines
figure('Color','w')
axesm('stereo','Origin',[-90 -150],'MapLatLimit',[-90 -20])
axis off; 
framem on; 
gridm on; 
mlabel on; 
plabel on;
setm(gca,'MLabelParallel',-20)
geoshow(coastlat,coastlon,'DisplayType','polygon')
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The call to the axesm function above is equivalent to:

axesm('stereo','Origin',[-90 -150 0],'FLatLimit',[-Inf 70])

Create Equatorial Azimuthal Projection

This example shows how to create a map of an Equidistant Azimuthal projection with the origin on
the Equator, covering from 10° E to 170° E. The origin longitude falls at the center of this range (90
E), and the map reaches north and south to within 10° of each pole.

Read coast data and display. The call to axesm is equivalent to axesm('eqaazim','Origin',[0
90 0],'FLatLimit',[-Inf 80]).

load coastlines
figure('Color','w')
axesm('eqdazim','FLatLimit',[],'MapLonLimit',[10 170])
axis off; 
framem on; 
gridm on; 
mlabel on; 
plabel on;
setm(gca,'MLabelParallel',0,'PLabelMeridian',60)
geoshow(coastlat,coastlon,'DisplayType','polygon')
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Create General Azimuthal Projection

This example shows how to construct an Orthographic projection map with the origin centered near
Paris, France. You can't use MapLatLimit or MapLonLimit here.

Read in coast data and display.

load coastlines
originLat = dm2degrees([48 48]);
originLon = dm2degrees([ 2 20]);

figure('Color','w')
axesm('ortho','Origin',[originLat originLon])
axis off; framem on; gridm on; mlabel on; plabel on;
setm(gca,'MLabelParallel',30,'PLabelMeridian',-30)
geoshow(coastlat,coastlon,'DisplayType','polygon')
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Create Long Narrow Oblique Mercator Projection

This example shows how to create a map with a long, narrow, oblique Mercator projection. The
example shows the area 10 degrees to either side of the great-circle flight path from Tokyo to New
York. You can't use MapLatLimit or MapLonLimit .

load coastlines
latTokyo = dm2degrees([ 35 40]);
lonTokyo = dm2degrees([139 45]);

latNewYork = dm2degrees([ 40 47]);
lonNewYork = dm2degrees([-73 58]);

[dist,az] = distance(latTokyo,lonTokyo,latNewYork,lonNewYork);
[midLat,midLon] = reckon(latTokyo,lonTokyo,dist/2,az);
midAz = azimuth(midLat,midLon,latNewYork,lonNewYork);

buf = [-10 10];

figure('Color','w')
axesm('mercator','Origin',[midLat midLon 90-midAz], ...
    'FLatLimit',buf,'FLonLimit',[-dist/2 dist/2] + buf)
axis off; framem on; gridm on; tightmap
geoshow(coastlat,coastlon,'DisplayType','polygon')
plotm([latTokyo latNewYork],[lonTokyo lonNewYork],'r-')
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See Also

More About
• “The Map Frame” on page 6-27
• “Map and Frame Limits” on page 6-29
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The Map Grid
The map grid is the set of displayed meridians and parallels, also known as a graticule. Display the
grid by setting the axesm-based map property Grid to 'on'. You can do this when you create axesm-
based maps with axesm, with setm, or with the direct command gridm on.

Control Grid Spacing
To control display of meridians and parallels, set a scalar meridian spacing or a vector of desired
meridians in the MLineLocation property. The property PLineLocation serves a corresponding
purpose for parallels. The default values place grid lines every 30° for meridians and every 15° for
parallels.

Layer Grids
By default, the grid is placed as the top layer of any display. You can alter this by changing the
GAltitude property, so that other map objects can be placed "above" the grid. The new grid is
drawn at its new altitude. The units used for GAltitude are specified with the daspectm function.

To reposition the grid back to the top of the display, use the command gridm reset. You can also
control the appearance of grid lines with the GLineStyle and GLineWidth properties, which are
':' and 0.5, respectively, by default.

Limit Grid Lines
The Miller projection is an example in which all the meridians can extend to the poles without
appearing to be cluttered. In other projections, such as the orthographic (below), the map grid can
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obscure the surface where they converge. Two axesm-based map properties, MLineLimit and
MLineException, enable you to control such clutter:

• Use the MLineLimit property to specify a pair of latitudes at which to terminate the meridians.
For example, setting MLineLimit to [-75 75] completely clears the region above and below this
latitude range of meridian lines.

• If you want some lines to reach the poles but not others, you can specify them with the
MLineException property. For example, if MLineException is set to [-90 0 90 180], then
the meridians corresponding to the four cardinal longitudes will continue past the limit on to the
pole.

The use of these properties is illustrated in the figure below. Note that there are two corresponding
axesm-based map properties, PLineLimit and PLineException, for controlling the extent of
displayed parallels.

Label Grids
You can label displayed parallels and meridians. MeridianLabel and ParallelLabel are on-off
properties for displaying labels on the meridians and parallels, respectively. They are both 'off' by
default. Initially, the label locations coincide with the default displayed grid lines, but you can alter
this by using the PlabelLocation and MlabelLocation properties. These grid lines are labeled
across the north edge of the map for meridians and along the west edge of the map for parallels.
However, the property MlabelParallel allows you to specify 'north', 'south', 'equator', or a
specific latitude at which to display the meridian labels, and PlabelMeridian allows the choice of
'west', 'east', 'prime', or a specific longitude for the parallel labels. By default, parallel labels
are displayed in the range of 0° to 90° north and south of the equator while meridian labels are
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displayed in the range of 0° to 180° east and west of the prime meridian. You can use the
mlabelzero22pi function to redisplay the meridian labels in the range of 0° to 360° east of the
prime meridian.

Properties affecting grid labeling are listed below.

Property Effect
MeridianLabel Toggle display of meridian labels
ParallelLabel Toggle display of parallel labels
MlabelLocation Alternate interval for labeling meridians
PlabelLocation Alternate interval for labeling parallels
MlabelParallel Keyword or latitude for placing meridian labels
PlabelMeridian Keyword or longitude for placing parallel labels
mlabelzero22pi(function) Relabel meridians with positive angle from 0° to 360°

For complete descriptions of all axesm-based map properties, refer to the axesm-Based Map
Properties reference page.
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Inset Maps

An inset map is a smaller map displayed inside a larger map. You can use an inset map to create
geographic context for the larger map. This example shows how to create a map of Massachusetts
and include an inset map of the northeastern United States.

This example shows how to create an inset map in an axesm-based map. For an example of creating
inset maps in map axes (since R2023a), see “Position Multiple Map Axes in Figure” on the mapaxes
reference page. For a comparison of map axes and axesm-based maps, including when to use each
type of display, see “Choose a 2-D Map Display” on page 4-2.

Prepare Data

Read USA state boundaries from a shapefile. Indicate that file contains latitude and longitude
coordinates by specifying the UseGeoCoords name-value argument.

states = shaperead('usastatehi.shp','UseGeoCoords',true);

Extract the state boundaries of Massachusetts and find their latitude and longitude limits.

ma = states(strcmp({states.Name},'Massachusetts'));
latlim = [min(ma.Lat) max(ma.Lat)];
lonlim = [min(ma.Lon) max(ma.Lon)];

Create Map

Create a map using the latitude and longitude coordinates. Set the face frame color of the map to
light blue. Display the USA boundaries as light-brown polygons and the Massachusetts boundaries as
green polygons.

figure
h1 = usamap(latlim,lonlim);
setm(h1,'FFaceColor','#B7E9F7')
geoshow(states,'FaceColor','#EFE6DC')
geoshow(ma,'FaceColor','#90EE90')
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Create Inset Map

Create an inset map. To do this, first create axes in the lower-left of the map frame. Place a map with
latitude and longitude limits that contain Pennsylvania and Maine inside the axes, remove the parallel
and meridian labels, and remove the grid lines. Then, display the USA boundaries as gray polygons
and the Massachusetts boundaries as green polygons.

h2 = axes('Position',[0.15 0.25 0.2 0.2]);
usamap({'PA','ME'})
setm(h2,'FFaceColor','w')
plabel off
mlabel off
gridm off
geoshow(states,'FaceColor','#EDEDED')
geoshow(ma,'FaceColor','#90EE90')
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See Also
Functions
usamap | geoshow | shaperead

Related Examples
• “Create Map Displays with Geographic Data” on page 4-63
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Customize Appearance of Vector Basemaps

(Since R2023a)

Add custom vector basemaps from map tiles hosted by Esri® or from MBTiles files by using the
addCustomBasemap function. You can customize the appearance of vector basemaps, such as the
colors and fonts, by specifying a style. There are several ways to specify a style for vector basemaps.

• Use a predefined style on page 6-51 — Predefined styles are convenient and do not require
internet access.

• Use a style URL on page 6-52 — Style URLs enable you to use visual elements that are not
available with predefined styles.

• Use a JSON file on page 6-53 — JSON files are customizable and enable you to use visual
elements that are not available with predefined styles.

• Edit a predefined style on page 6-54 — Editing a predefined style is available for vector
basemaps added from MBTiles files.

Use a Predefined Style

Specify the appearance of a custom vector basemap by using a predefined style. Predefined styles are
convenient and do not require internet access. For a list of predefined style options, see the “Style”
name-value argument on the addCustomBasemap page.

Create a basemap from an MBTiles file containing vector map tiles. Specify a predefined style that
uses colors based on OpenStreetMap®.

basemapName1 = "osmstyle";
addCustomBasemap(basemapName1,"naturalearth.mbtiles",Style="openstreetmap")

Use the basemap to create a map of Europe.

figure
geobasemap(basemapName1)
geolimits([38.1 56.6],[-7.8 27.2])
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Use a URL

Specify the appearance of a custom vector basemap by using a URL. Styles defined by URLs enable
you to use visual elements that are not available with predefined styles, for example, textures and
additional fonts.

Create a basemap using the map tiles URL and style URL for Modern Antique [1] on page 6-56.

basemapName2 = "antiquestyle";
url2 = "https://basemaps.arcgis.com/arcgis/rest/services/World_Basemap_v2/VectorTileServer/tile/${z}/${x}/${y}.pbf";
style2 = "https://www.arcgis.com/sharing/rest/content/items/effe3475f05a4d608e66fd6eeb2113c0/resources/styles/root.json?f=pjson";
addCustomBasemap(basemapName2,url2,Style=style2)

Use the basemap to create a map of Europe.

figure
geobasemap(basemapName2)
geolimits([38.1 56.6],[-7.8 27.2])
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Use a JSON file

Specify the appearance of a custom vector basemap by using a JSON file. Styles defined by JSON files
are customizable and enable you to use visual elements that are not available with predefined styles.
For an example of how to edit JSON style files, see Edit a predefined style on page 6-54.

Create a basemap from an MBTiles file containing vector map tiles. Specify the style using a sample
JSON file that emphasizes roads and transit networks.

basemapName3 = "streetstyle"

basemapName3 = 
"streetstyle"

addCustomBasemap(basemapName3,"naturalearth.mbtiles",Style="streetstyle.json")

Use the basemap to create a map of Europe.

figure
geobasemap(basemapName3)
geolimits([38.1 56.6],[-7.8 27.2])
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Edit a Predefined Style

When you create a custom vector basemap using an MBTiles file and a predefined style, the
addCustomBasemap function generates a JSON file that defines the style for the basemap. You can
customize the appearance of a predefined style by editing the JSON file and then adding the basemap
again. This example shows how to manually edit the JSON file using a text editor. Alternatively, if you
have access to a visual style editor, you can customize the style interactively.

The addCustomBasemap function places the JSON file in the same folder as the MBTiles file. Prepare
for the example by copying an MBTiles file containing vector map tiles to a writeable location, in this
case, the working directory for the example.

mbtilesFilename = "naturalearth.mbtiles";
if ~isfile(mbtilesFilename)
    mbtilesFullPath = fullfile(matlabroot,"toolbox","map","mapdata",mbtilesFilename);
    copyfile(mbtilesFullPath)
end

Create a basemap from the MBTiles file. Specify a predefined style that uses light blue for water
areas and light green for land areas.

basemapName4 = "bluegreenstyle";
addCustomBasemap(basemapName4,"naturalearth.mbtiles",Style="bluegreen")

Use the basemap to create a map of Europe.
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figure
geobasemap(basemapName4)
geolimits([38.1 56.6],[-7.8 27.2])

The addCustomBasemap function names the JSON file using the name of the MBTiles file and the
name of the style, in this case, naturalearth_bluegreen.json. Open the file in a text editor. To
programmatically open the file in the MATLAB® Editor, uncomment this code.

% edit("naturalearth_bluegreen.json")

The JSON file follows the Mapbox GL JS Style Specification [2] on page 6-57. Update the JSON file
by making these changes:

• Background color — Find the layer that specifies the appearance of the background ("id":
"background"). Change the background color to light orange by specifying the "fill-color"
property as "#f2de96".

• Land color — Find the layer that specifies the appearance of land areas ("id": "land"). Change
the land color to light orange by specifying "fill-color" as "#f2de96".

• Ocean color — Find the layer that specifies the appearance of ocean areas ("id": "ocean").
Change the ocean color to a different shade of blue by specifying "fill-color" as "#add8e6".

• Country boundary width — Find the layer that specifies appearance of country boundaries [3] on
page 6-57 ("id": "admin0_boundary"). The "line-width" property specifies line widths at
different zoom levels. For example, at zoom level 4, the file specifies the line width as 1.5 pixels.
Use thicker lines by specifying 2 pixels.
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• Size of place markers — Find the layer that specifies the appearance of circle markers for high-
importance places ("id": "high_importance_places_circles"). Change the radius of the
markers by specifying the "circle-radius" property as 4.

• Size of place labels — Find the layer that specifies the appearance of text labels for populated
places ("id": "high_importance_places"). The "text-size" property specifies the text
size at different zoom levels. For example, at zoom level 2, the text size 11 pixels. Use larger text
by specifying 13 pixels.

Save the updates to a new JSON file. This example includes the updates in the supporting file
naturalearth_blueorange.json.

Add a custom basemap that uses the updated style by using the addCustomBasemap function.

basemapName5 = "blueorangestyle";
addCustomBasemap(basemapName5,mbtilesFilename,Style="naturalearth_blueorange.json")

View the updated basemap by creating a new map of Europe.

figure
geobasemap(basemapName5)
geolimits([38.1 56.6],[-7.8 27.2])

[1] "Modern Antique - Overview." ArcGIS Online. Accessed December 8, 2022. https://
www.arcgis.com/home/item.html?id=effe3475f05a4d608e66fd6eeb2113c0.
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https://www.arcgis.com/home/item.html?id=effe3475f05a4d608e66fd6eeb2113c0.


[2] "Style Specification | Mapbox GL JS | Mapbox." Mapbox. Accessed December 8, 2022. https://
docs.mapbox.com/mapbox-gl-js/style-spec/.

[3] Alignment of boundaries and region labels are a presentation of the feature provided by the data
vendors and do not imply endorsement by MathWorks®.

See Also
Functions
addCustomBasemap | geobasemap

Related Examples
• “Use Basemaps in Offline Environments” on page 6-71
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Create Common Plots over Basemap Images

When you create maps using geographic axes, you can provide context for your data by specifying a
basemap. Geographic axes support several types of plots, including point, line, and polygon plots
(geoplot), scatter plots (geoscatter), density plots (geodensityplot), and bubble plots
(geobubble or bubblechart).

When geographic axes do not support a type of plot, you can read an image from a basemap by using
the readBasemapImage function and then display both the image and the plot over an axes. This
topic includes examples for displaying these types of plots over basemap images:

• Digraphs on page 6-58
• Contours on page 6-60
• Images on page 6-62
• 3-D surfaces on page 6-63

Digraphs

This example shows how to display a digraph of airport traffic over a basemap image.

Load Data

Specify the codes and geographic coordinates of five US airports.

code = ["DEN" "LAS" "LAX" "SEA" "SFO"];
lat = [39.8561 36.1699 33.9416 47.4502 37.6213];
lon = [-104.6737 -115.1398 -118.4085 -122.3088 -122.379];

Create a digraph from a table containing airport traffic data. Reorder the digraph nodes to match the
order in code.

• The Origin and Dest table variables contain codes for the origin airports and destination
airports.

• The NumFlights variable table contains the number of flights between the origin and destination
airport.

T = readtable("airport_traffic.xlsx");
G = digraph(T.Origin,T.Dest,T.NumFlights);
G = reordernodes(G,code);

Read Basemap Image

Specify latitude and longitude limits for the basemap image. Find the limits for the region containing
the airports by using the geoquadline function. Expand the limits by 2 degrees in latitude and 3
degrees in longitude by using the bufgeoquad function.

[latlim,lonlim] = geoquadline(lat,lon);
[latlim,lonlim] = bufgeoquad(latlim,lonlim,2,3);

Read an image for the region from the "landcover" basemap, using a zoom level of 5, as an array
and a map cells reference object.

[A,RA] = readBasemapImage("landcover",latlim,lonlim,5);
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Project Data to Web Mercator Coordinates

The readBasemapImage function spatially references basemap images by using a Web Mercator
(WGS 84 / Pseudo-Mercator) projected coordinate reference system (CRS). Project the airport
locations from geographic coordinates to Web Mercator coordinates.

[x,y] = projfwd(RA.ProjectedCRS,lat,lon);

Display Data over Basemap Image

Display the basemap image on a map with no axis labels.

figure
mapshow(A,RA)
hold on
axis off

Display the digraph on the same map. Customize the digraph plot using these options:

• Position the nodes by setting the x-data and y-data properties to the projected airport coordinates.
• Use thicker edges for more heavily trafficked routes by setting the line width property.
• Improve the visibility of the plot by setting the node font size, edge transparency, arrow size, edge

color, and node color properties.

lineWidth = G.Edges.Weight/min(G.Edges.Weight);
plot(G,XData=x,YData=y,LineWidth=lineWidth, ...
    NodeFontSize=11,EdgeAlpha=0.6,ArrowSize=12, ...
    EdgeColor="#A2142F",NodeColor="#A2142F")

Add a title and subtitle.

title("Airport Traffic for Five US Airports")
subtitle("Basemap Attribution: Natural Earth")
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Contours

This example shows how to display contours of the Earth Gravitational Model of 1996 (EGM96) over a
basemap image.

Load Data

Load geoid heights from EGM96 for a region containing the conterminous United States. The
egm96geoid function returns geoid heights as an array and a geographic cells reference object in
WGS 84 coordinates.

latlim = [17 56];
lonlim = [-128 -64];
[N,RN] = egm96geoid;
[N,RN] = geocrop(N,RN,latlim,lonlim);

To read spatially referenced raster data from a file, use the readgeoraster function.

Read Basemap Image

Read an image for the region from the "satellite" basemap as an array, a map cells reference
object, and an attribution string.

[A,RA,attrib] = readBasemapImage("satellite",latlim,lonlim);
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Project Data to Web Mercator Coordinates

The readBasemapImage function spatially references basemap images by using a Web Mercator
(WGS 84 / Pseudo-Mercator) projected CRS. To display the geoid heights over the basemap image,
you must project the geographic coordinates to the projected CRS.

Extract the geographic coordinates of the geoid heights from the reference object. Then, project the
geographic coordinates to Web Mercator coordinates.

[lat,lon] = geographicGrid(RN);
[x,y] = projfwd(RA.ProjectedCRS,lat,lon);

Display Data over Basemap Image

Display the basemap image on a map with no axis labels.

figure
mapshow(A,RA)
hold on
axis off

Display 10 contours of the geoid heights on the same map.

contour(x,y,N,10,LineWidth=1.5)

Add a title and subtitle.

title("Contours of EGM96")
subtitle("Basemap Attribution: " + attrib)

 Create Common Plots over Basemap Images

6-61



Images

This example shows how to display an icon of the L-shaped membrane over a basemap image
containing the MathWorks® Lakeside Campus in Natick, MA.

Read Basemap Image

Read an image of size 800-by-1000 from the "streets-dark" basemap for a region centered on the
Lakeside Campus. The readBasemapImage function returns the basemap image as an array, a map
cells reference object, and an attribution string.

lat = 42.3010;
lon = -71.3751;
[A,RA,attrib] = readBasemapImage("streets-dark",[lat lon],16,[800 1000]);

Load Icon

Read the icon as an indexed image of size 16-by-16 and a colormap. To improve visibility on the map,
increase the image size by a factor of 4.

[M,cmap] = imread(fullfile(matlabroot,"toolbox","matlab","icons","matlabicon.gif"));
[M,cmap] = imresize(M,cmap,4);

Spatially Reference Icon

The readBasemapImage function spatially references basemap images by using a Web Mercator
(WGS 84 / Pseudo-Mercator) projected CRS. Using the coordinates of the Lakeside Campus as the
lower-left corner of the image, spatially reference the icon to Web Mercator coordinates.

Project the latitude and longitude coordinates of the Lakeside Campus to Web Mercator coordinates.

[x,y] = projfwd(RA.ProjectedCRS,lat,lon);

Specify the xy-limits of the icon using the projected coordinates, the size of the icon, and the sizes of
individual cells in the basemap image.

sz = size(M);
xlimits = [x (x + sz(2)*RA.CellExtentInWorldX)];
ylimits = [y (y + sz(1)*RA.CellExtentInWorldY)];

Spatially reference the icon by creating a map cells reference object. Indicate that the first row of the
image is the northmost row (as is common with images) by setting the ColumnsStartFrom property.

RM = maprefcells(xlimits,ylimits,sz,ColumnsStartFrom="north");

Display Data over Basemap Image

Display the basemap image on a map with no axis labels.

figure
mapshow(A,RA)
hold on
axis off

Display the icon on the same map.

mapshow(M,cmap,RM)

Add a title and subtitle. Wrap the basemap attribution text.
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title("Location of Lakeside Campus")

t = "Basemap Attribution: " + attrib;
t = string(textwrap(t,55));
subtitle(t)

3-D Surfaces

This example shows how to display a sample 3-D surface over a basemap image.

Load Data

Create a sample 3-D surface referenced to geographic coordinates. Generate the z-coordinates by
using the peaks function. Reference the z-coordinates to a region in latitude-longitude coordinates
by using the georefcells function.

Z = 100*peaks;
RZ = georefcells([42.3342 42.3561],[-73.3191 -73.2847],size(Z));

To read spatially referenced raster data from a file, use the readgeoraster function.

Read Basemap Image

Specify latitude and longitude limits for the basemap image by expanding the 2-D limits of the
surface. For this example, expand the limits by 0.01 degrees.

[latlim,lonlim] = bufgeoquad(RZ.LatitudeLimits,RZ.LongitudeLimits,0.01,0.01);
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Read an image from the "streets" basemap as an array, a map cells reference object, and an
attribution string.

[A,RA,attrib] = readBasemapImage("streets",latlim,lonlim);

Project Data to Web Mercator Coordinates

The readBasemapImage function spatially references basemap images by using a Web Mercator
(WGS 84 / Pseudo-Mercator) projected CRS. To display the surface over the basemap image, you must
project the geographic coordinates to the projected CRS.

Extract the geographic coordinates of the surface from the reference object. Then, project the
geographic coordinates to Web Mercator coordinates.

[lat,lon] = geographicGrid(RZ);
[x,y] = projfwd(RA.ProjectedCRS,lat,lon);

Display Data over Basemap Image

Display the basemap image on a map with no axis labels.

figure
mapshow(A,RA)
hold on
axis off

Display the 3-D surface on the same map.

surf(x,y,Z)
view(3)

Add a title and subtitle. Wrap the basemap attribution text.

title("3-D Surface Over Basemap")

t = "Basemap Attribution: " + attrib;
t = string(textwrap(t,55));
subtitle(t)
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See Also
Functions
readBasemapImage | readgeoraster | projfwd

Objects
MapCellsReference | GeographicAxes Properties

Related Examples
• “Types of MATLAB Plots”
• “Change Projection of Basemap Image” on page 6-66
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Change Projection of Basemap Image

Geographic axes display data over basemaps using a Web Mercator projected coordinate reference
system (CRS). While the Mercator projection preserves angles and is suitable for small regions, it
distorts areas and is not appropriate for large or polar regions.

To display data over a basemap using a different projection method, you can read an image from a
basemap by using the readBasemapImage function and then change the projection using one of
these options:

• Change Projection Using Projection Stored in axesm-Based Map on page 6-66 — This option is
convenient for projection methods supported by axesm-based maps.

• Change Projection Using Projected CRS Object on page 6-68 — This option is useful for
projection methods not supported by axesm-based maps.

Change Projection Using Projection Stored in axesm-Based Map

This example shows how to project a basemap image by using the projection method stored in an
axesm-based map. For more information about projections supported by axesm-based maps, see
“Summary and Guide to Projections” on page 8-45.

Load Data

Read the latitude and longitude coordinates of European capitals from a text file.

[lat,lon] = readvars("european_capitals.txt");

Read Basemap Image

Specify latitude and longitude limits for the basemap image. Find the limits for the region containing
the capitals by using the geoquadline function. Expand the limits by 10 degrees in latitude and
longitude by using the bufgeoquad function.

[latlim,lonlim] = geoquadline(lat,lon);
[latlim,lonlim] = bufgeoquad(latlim,lonlim,10,10);

Read an image for the region from the "bluegreen" basemap, using a zoom level of 3, as an array
and a map cells reference object in Web Mercator coordinates.

[A,RA] = readBasemapImage("bluegreen",latlim,lonlim,3);

Unproject Basemap Image

Extract the Web Mercator coordinates of the basemap image from the reference object. Then,
unproject the coordinates to geographic coordinates.

[xGrid,yGrid] = worldGrid(RA);
[latGrid,lonGrid] = projinv(RA.ProjectedCRS,xGrid,yGrid);

The coordinates of the European capitals are already in geographic coordinates. If you are adapting
this example to your own code and your data is in projected coordinates, you must unproject your
data to geographic coordinates.
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Create Map

Create an axesm-based map with a projection that is suitable for the region by using the worldmap
function. Alternatively, you can create an axesm-based map with a specified projection ID by using
the axesm function.

figure
h = worldmap(latlim,lonlim);

View the projection method stored in the map.

getm(h,"mapprojection")

ans = 
'eqdconic'

The result 'eqdconic' means that the map uses an Equidistant Conic projection.

Display the basemap and the European capitals on the map. The geoshow function projects and
displays the latitude-longitude coordinates of the basemap image and capitals using the projection
method stored in the map.

geoshow(latGrid,lonGrid,A)
geoshow(lat,lon,DisplayType="point",Marker="pentagram")
title("European Capitals")
subtitle("Basemap Attribution: Natural Earth")

Text in the projected basemap image can appear distorted.
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Change Projection Using Projected CRS Object

This example shows how to read a basemap image using a projected CRS object and then display the
projected image on an axes.

Load Data

Read a shapefile containing the coordinates of world cities into the workspace as a geospatial table.
Extract the latitude and longitude coordinates.

GT = readgeotable("worldcities.shp");
lat = GT.Shape.Latitude;
lon = GT.Shape.Longitude;

Specify Projected CRS and Find Area of Use

Specify the projected CRS you want to use. For this example, create a projcrs object for WGS 84 /
Equal Earth Asia-Pacific, which has the EPSG code 8859.

equalEarth = projcrs(8859);

Different projected CRSs are valid for different areas of use. For many projected CRSs, you can find
the area of use by displaying the well-known text (WKT) string of the CRS and finding the BBOX
attribute. This WKT specifies BBOX in the second-to-last line.

wktstring(equalEarth,Format="formatted")

ans = 
    "PROJCRS["WGS 84 / Equal Earth Asia-Pacific",
         BASEGEOGCRS["WGS 84",
             DATUM["World Geodetic System 1984",
                 ELLIPSOID["WGS 84",6378137,298.257223563,
                     LENGTHUNIT["metre",1]]],
             PRIMEM["Greenwich",0,
                 ANGLEUNIT["degree",0.0174532925199433]],
             ID["EPSG",4326]],
         CONVERSION["Equal Earth Asia-Pacific",
             METHOD["Equal Earth",
                 ID["EPSG",1078]],
             PARAMETER["Longitude of natural origin",150,
                 ANGLEUNIT["degree",0.0174532925199433],
                 ID["EPSG",8802]],
             PARAMETER["False easting",0,
                 LENGTHUNIT["metre",1],
                 ID["EPSG",8806]],
             PARAMETER["False northing",0,
                 LENGTHUNIT["metre",1],
                 ID["EPSG",8807]]],
         CS[Cartesian,2],
             AXIS["(E)",east,
                 ORDER[1],
                 LENGTHUNIT["metre",1]],
             AXIS["(N)",north,
                 ORDER[2],
                 LENGTHUNIT["metre",1]],
         USAGE[
             SCOPE["Very small scale equal-area mapping - Asia-Pacific-centred."],
             AREA["World centred on Asia-Pacific."],
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             BBOX[-90,-29.99,90,-30.01]],
         ID["EPSG",8859]]"

Specify the latitude and longitude limits for the basemap image by using the information in BBOX. For
this projected CRS, unwrap the maximum longitude by adding 360 degrees to the minimum
longitude.

latlim = [-90 90];
lonmin = -29.99;
lonlim = [lonmin lonmin+360];

Read Basemap Image

Read an image from the "satellite" basemap as an array, a map cells reference object in Web
Mercator coordinates, and an attribution string.

[A,RA,attrib] = readBasemapImage("satellite",latlim,lonlim);

Reproject Data and Basemap Image

Reproject the coordinates of the basemap image to Equal Earth coordinates.

• Extract the Web Mercator coordinates of the basemap image from the reference object.
• Unproject the Web Mercator coordinates to geographic coordinates.
• Project the geographic coordinates to Equal Earth coordinates.

[xGrid,yGrid] = worldGrid(RA);
[latGrid,lonGrid] = projinv(RA.ProjectedCRS,xGrid,yGrid);
[xEqualEarth,yEqualEarth] = projfwd(equalEarth,latGrid,lonGrid);

Project the geographic coordinates of the world cities to Equal Earth coordinates. If you are adapting
this example to your own code and your data is in projected coordinates, you must first unproject
your data to geographic coordinates.

[xData,yData] = projfwd(equalEarth,lat,lon);

Create Map

Display the projected basemap image and world cities on a map with no axis labels.

figure
mapshow(xEqualEarth,yEqualEarth,A)
hold on
mapshow(xData,yData,DisplayType="point",Marker=".")
title("World Cities")
subtitle("Basemap Attribution: " + attrib)
axis off
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Text in the projected basemap image can appear distorted.

See Also
Functions
readBasemapImage | worldmap | geoshow | mapshow | projfwd | projinv

Objects
MapCellsReference | projcrs

Related Examples
• “Create Common Plots over Basemap Images” on page 6-58
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Use Basemaps in Offline Environments
Provide geographic context for your maps by displaying data over a basemap, also called a base layer.
MathWorks provides a variety of basemaps, including low-resolution two-tone options created using
Natural Earth and high-zoom-level options hosted by Esri. For a list of basemap options, see the
basemap argument of the geobasemap function.

Most of these basemaps require internet access, including the default basemap. If you do not have
reliable access to the internet, you can use strategies such as downloading a selection of basemaps
onto your local system or displaying data over the "darkwater" basemap. Some strategies require
MATLAB to have temporary internet access and other strategies do not require MATLAB to have
internet access. Different strategies support different types of map displays.

Internet Access Requirement
for MATLAB

Strategy Supported Map Displays

“Temporary Internet Access” on
page 6-72

Download basemaps onto your
local system on page 6-0

• Objects with a Basemap
property, for example:

• Geographic axes
• Geographic globes
• Site Viewer

(Communications
Toolbox™, Antenna
Toolbox™)

• Satellite Scenario Viewer
(Satellite
Communications Toolbox)

Use cached basemap tiles on
page 6-0

• Geographic axes
• Geographic bubble charts

Use a spatially referenced
image from a web source on
page 6-0

• Axes (mapshow)
• axesm-based maps

(geoshow)
“No Internet Access” on page 6-
75

Create a basemap from an
MBTiles file on page 6-0

• Objects with a Basemap
property

Use a basemap installed with
MATLAB® on page 6-0

• Objects with a Basemap
property

Use a spatially referenced
image from a file on page 6-0

• Axes (mapshow)
• axesm-based maps

(geoshow)
Use spatially referenced vector
data from a file on page 6-0

• Map axes (geoplot)
• Geographic axes (geoplot)
• Axes (mapshow)
• axesm-based maps

(geoshow)
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Temporary Internet Access

These strategies require MATLAB to temporarily access the internet. When MATLAB is in an online
environment, you can save the basemap data to your local system. Then, when MATLAB is in an
offline environment, you can load the saved basemap data.

• Download basemaps onto your local system on page 6-72
• Use cached basemap tiles on page 6-72
• Use a spatially referenced image from a web source on page 6-73

Download basemaps onto your local system

When you have internet access, you can download the basemaps created using Natural Earth onto
your local system. The basemaps hosted by Esri are not available for download. Then, when you are
in an offline environment, you can use the downloaded basemaps.

Download basemaps using the Add-On Explorer.

1 On the MATLAB Home tab, in the Environment section, click Add-Ons and then Get Add-Ons.
2 In the Add-On Explorer, scroll to the MathWorks Optional Features section, and click Show

All to find the basemap add-ons. You can also search for the basemap add-ons by name, or click
Optional Features in Filter by Type.

3 Select the basemap add-ons that you want to download.

These are the names of the basemap add-ons and their associated basemap argument names.

• MATLAB Basemap Data - bluegreen ("bluegreen")
• MATLAB Basemap Data - grayland ("grayland")
• MATLAB Basemap Data - colorterrain ("colorterrain")
• MATLAB Basemap Data - grayterrain ("grayterrain")
• MATLAB Basemap Data - landcover ("landcover")

Use cached basemap tiles

When you view a basemap over the internet, MATLAB temporarily caches the basemap tiles. If you
lose your internet connection, you can still view the cached basemap tiles.

When you are in an offline environment and attempt to view basemap tiles that you have not
previously viewed, MATLAB issues a warning and displays different tiles depending on the type of
basemap. When you attempt to view tiles created using Natural Earth, MATLAB displays
"darkwater" tiles. When you attempt to view tiles from a custom basemap or tiles hosted by Esri,
you see missing map tiles.

Cached basemap tiles have these limitations:

• MATLAB stores the cached tiles in a temporary folder. Your operating system can delete the
temporary folder.

• The cached tiles can expire.
• MATLAB caches custom basemap tiles for only the current MATLAB session.
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Use a spatially referenced image from a web source

When you have internet access, you can read an image from a basemap or a Web Map Service (WMS)
server as a spatially referenced image and save the image as a MAT or GeoTIFF file. Then, when you
are in an offline environment, you can load the image from the file and use it as a base layer for your
data.

Read and save an image from a basemap

Read satellite imagery for Boston into the workspace as an array, a map cells reference object, and an
attribution by using the readBasemapImage function.

[A1,R1,attrib1] = readBasemapImage("satellite",[42.3453 42.3711],[-71.099 -71.0454]);

Save the imagery as a GeoTIFF file by using the geotiffwrite function.

• The readBasemapImage function spatially references the image using the Web Mercator
projected coordinate reference system (CRS) with EPSG code 3857. Specify the CRS code by
using the CoordRefSysCode name-value argument.

• Include the attribution by specifying the ImageDescription TIFF tag.

tag = struct("ImageDescription",attrib1);
geotiffwrite("satelliteBoston.tif",A1,R1,CoordRefSysCode=3857,TiffTags=tag)

To use the basemap data, load the GeoTIFF file and attribution.

[A2,R2] = readgeoraster("satelliteBoston.tif");
info = imfinfo("satelliteBoston.tif");
attrib2 = info.ImageDescription;

Display the data on a map. Use the mapshow function when the reference object is a map reference
object and use the geoshow function when the reference object is a geographic reference object.

figure
mapshow(A2,R2)
title("Boston Imagery from Basemap")
subtitle("Attribution: " + attrib2)
axis off
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For more information about displaying data over basemaps images in offline environments, see
“Display Data over Basemaps When Internet Access Is Intermittent” on page 6-82.

Read and save an image from a WMS server

WMS servers provide publicly accessible geospatial data from web-based sources. Search the WMS
Database for orthoimagery from the USGS National Map.

usgs = wmsfind("basemap.nationalmap",SearchFields="ServerURL");
imagery = refine(usgs,"USGSImageryOnly",SearchFields="ServerURL");
imagery = wmsupdate(imagery);

Read orthoimagery for an area in Boston and save it as a GeoTIFF file.

[A3,R3] = wmsread(imagery,Latlim=[42.3453 42.3711],Lonlim=[-71.099 -71.0454]);
geotiffwrite("usgsImageryLayer.tif",A3,R3)

To use the WMS orthoimagery, load the GeoTIFF file and display it on a map.

[A4,R4] = readgeoraster("usgsImageryLayer.tif");
figure
usamap(A4,R4)
geoshow(A4,R4)
title("Boston Imagery from WMS Server")
subtitle("Attribution: USGS National Map")
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For more information about creating WMS maps in offline environments, see “Create WMS Maps
When Internet Access Is Intermittent” on page 9-51.

No Internet Access

These strategies do not require MATLAB to access the internet.

• Create a basemap from an MBTiles file on page 6-75
• Use "darkwater" basemap installed with MATLAB on page 6-77
• Use a spatially referenced image from a file on page 6-78
• Use spatially referenced vector data from a file on page 6-79

Create a basemap from an MBTiles file

When you are in an offline environment, you can create custom basemaps from MBTiles files. Create
custom basemaps from MBTiles files by using the addCustomBasemap function.

MBTiles files can contain raster or vector map tiles. If you do not know whether your MBTiles file
contains raster or vector map tiles, check with your data provider.

• Raster map tiles are useful for displaying satellite imagery and orthoimagery.
• Vector map tiles enable you to customize the appearance of the basemap and typically include

higher zoom levels than raster map tiles. For information about customizing the appearance of
vector basemaps, see “Customize Appearance of Vector Basemaps” on page 6-51.
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Create a basemap from a raster MBTiles file

Mapping Toolbox™ includes a raster MBTiles file with low-resolution USGS imagery called
usgsimagery.mbtiles. Create a custom basemap from the file and display it using a geographic
globe. Position the camera 3200 kilometers above Boston.

addCustomBasemap("usgsimagery","usgsimagery.mbtiles")

uif = uifigure;
g = geoglobe(uif);
geobasemap(g,"usgsimagery")
campos(g,42.3582,-71.0722,3200000) 

Create a basemap from a vector MBTiles file

(Since R2023a)

Mapping Toolbox includes a vector MBTiles file, naturalearth.mbtiles, with low-zoom levels of
region and land boundaries. Create a custom basemap from the file. Specify the appearance of the
basemap, including the colors and fonts, using a predefined topographic style. Predefined styles do
not require internet access. For information about vector basemap styles, including limitations in
offline environments, see the “Style” argument on the addCustomBasemap reference page.

addCustomBasemap("naturalearth","naturalearth.mbtiles",Style="topographic")

Display the custom basemap using a geographic axes.

figure
geobasemap naturalearth
geolimits([40.1951 47.8433],[-77.5238 -64.0377])
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title("Northeast United States with Vector MBTiles Basemap")
subtitle("Attribution: Natural Earth")

Use "darkwater" basemap installed with MATLAB

MATLAB includes the "darkwater" basemap, a two-tone land-ocean map with light gray land areas
and dark grey water areas. Using the "darkwater" basemap does not require internet access.

Display the "darkwater" basemap using a geographic axes. Center the map over the northeast
United States.

figure
geobasemap darkwater
geolimits([40.1951 47.8433],[-77.5238 -64.0377])
title("Northeast United States with Darkwater Basemap")
subtitle("Attribution: Natural Earth")

 Use Basemaps in Offline Environments

6-77



Use a spatially referenced image from a file

When you are in an offline environment, you can read a spatially referenced raster image from a file
and then use it as a base layer for your data. The function you use to read the data depends on the
file format.

• Read images in formats such as GeoTIFF by using the readgeoraster function.
• Read images in formats such as TIFF, JPEG, or PNG that are associated with a world file by using

the imread and worldfileread functions.

Read a GeoTIFF image of Boston into the workspace as an array and a map cells reference object.
Then, display the image on a map. Use the mapshow function when the reference object is a map
reference object and use the geoshow function when the reference object is a geographic reference
object.

[A5,R5] = readgeoraster("boston.tif");
figure
mapshow(A5,R5)
title("Boston Imagery from GeoTIFF File")
subtitle("Attribution: GeoEye")
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Use spatially referenced vector data from a file

When you are in an offline environment, you can read spatially referenced vector data from a file and
then use it as a base layer for your data. Read vector data in formats such as shapefile by using the
readgeotable function.

Mapping Toolbox™ includes a shapefile with world land areas called landareas.shp. Read the land
areas into the workspace as a geospatial table. Then, display the land areas on a world map.

GT = readgeotable("landareas.shp");

figure
worldmap world
geoshow(GT)
title("World Land Areas from Shapefile")

 Use Basemaps in Offline Environments

6-79



Mapping Toolbox™ includes shapefiles with high- and low-resolution US state boundaries called
usastatehi.shp and usastatelo.shp, respectively. Read the high-resolution state boundaries
into the workspace as a geospatial table. Clip the boundaries to include only the northeast states.

GT = readgeotable("usastatehi.shp");
ne = geoclip(GT.Shape,[40.1951 47.8433],[-77.5238 -64.0377]);

Display the boundaries using a geographic axes. To prevent MATLAB from using the basemaps
provided by MathWorks, set the basemap to "none".

figure
geobasemap none
hold on
geoplot(ne)
title("Northeast United States from Shapefile")
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See Also
Functions
geobasemap | geotiffwrite | wmsread

Related Examples
• “Access Basemaps for Geographic Axes and Charts”
• “Access Basemaps and Terrain for Geographic Globe” on page 5-68
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Display Data over Basemaps When Internet Access Is
Intermittent

In most cases, displaying data over basemaps requires internet access. When you have intermittent
internet access, you can prepare for an offline workflow by reading an image from a basemap and
saving the image as a MAT or GeoTIFF file. Then, when you are in an offline environment, you can
load the image from the file and use it as a base layer for your data.

This example shows how to plot point data over a basemap image. The behavior of the example
depends on whether you have internet access, but the resulting map is the same.

Specify whether you have internet access by using the logical scalar useInternet.

• If useInternet is true, read an image from the basemap and save it to a GeoTIFF file.
• If useInternet is false, read an image from a GeoTIFF file.

useInternet = true;

If you use this example as a model to create your own maps, you must create the saved files the first
time you run the example by setting useInternet to true.

Load Data

Import a shapefile containing the coordinates of locations in Boston as a geospatial table. The
shapefile represents the locations using points in a projected coordinate reference system (CRS).
Extract the xy-coordinates.

GT = readgeotable("boston_placenames.shp");
pointsX = GT.Shape.X;
pointsY = GT.Shape.Y;

Get information about the projected CRS.

pointsCRS = GT.Shape.ProjectedCRS

pointsCRS = 
  projcrs with properties:

                    Name: "NAD83 / Massachusetts Mainland"
           GeographicCRS: [1×1 geocrs]
        ProjectionMethod: "Lambert Conic Conformal (2SP)"
              LengthUnit: "meter"
    ProjectionParameters: [1×1 map.crs.ProjectionParameters]

Read Basemap

When you read an image from a basemap using the readBasemapImage function, you must specify
the region to read using geographic coordinates. For this example, however, the locations are in
projected coordinates. Unproject the xy-coordinates to latitude-longitude coordinates.

[pointslat,pointslon] = projinv(pointsCRS,pointsX,pointsY);

Find the latitude-longitude limits for a region surrounding the coordinates by using the
geoquadline and bufgeoquad functions.
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[latlim,lonlim] = geoquadline(pointslat,pointslon);
[latlim,lonlim] = bufgeoquad(latlim,lonlim,0.005,0.005);

Read a basemap image for the region from the "satellite" basemap.

• If useInternet is true, read the basemap image as an array, a map cells reference object in
Web Mercator coordinates (EPSG code 3857), and an attribution string. Save the array and
reference object to a GeoTIFF file. Include the attribution by specifying the ImageDescription
TIFF tag.

• If useInternet is false, load the basemap image and attribution.

if useInternet
    [A,R,attrib] = readBasemapImage("satellite",latlim,lonlim);
    tag = struct("ImageDescription",attrib);
    geotiffwrite("satelliteBoston.tif",A,R,CoordRefSysCode=3857,TiffTags=tag)
else
    [A,R] = readgeoraster("satelliteBoston.tif");
    info = imfinfo("satelliteBoston.tif");
    attrib = info.ImageDescription;
end

Project Data to Web Mercator Coordinates

Project the geographic coordinates to the same CRS as the basemap image.

[wmX,wmY] = projfwd(R.ProjectedCRS,pointslat,pointslon);

Display Data over Basemap Image

Display the basemap image on a map with no axis labels.

figure
mapshow(A,R)
hold on
axis off

Display the locations on the same map.

mapshow(wmX,wmY,DisplayType="point",Marker="o",MarkerFaceColor="r")
title("Locations in Boston Over Satellite Imagery")
subtitle("Basemap Attribution: " + attrib)
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The geographic CRS underlying the geographic coordinates is NAD83, while the geographic CRS
underlying the basemap image is WGS84. NAD83 and WGS84 are similar, but not identical. As a
result, the coordinates and basemap can appear misaligned.

See Also
Functions
readBasemapImage | geotiffwrite | readgeoraster

Objects
MapCellsReference | projcrs

Related Examples
• “Use Basemaps in Offline Environments” on page 6-71
• “Create WMS Maps When Internet Access Is Intermittent” on page 9-51
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Thematic Maps
Most published and online maps fall into four categories:

• Navigation maps, including topographic maps and nautical and aeronautical charts
• Geophysical maps, that show the structure and dynamics of earth, oceans and atmosphere
• Location maps, that depict the locations and names of physical features
• Thematic maps, that portray attribute data about locations and features

Although online maps often combine these categories in new and unexpected ways, published maps
and atlases tend to respect them.

Thematic maps tend to be more highly stylized than other types of maps and frequently omit
locational information such as place names, physical features, coordinate grids, and map scales. This
is because rather than showing physical features on the ground, such as shorelines, roads,
settlements, topography, and vegetation, a thematic map displays quantified facts (a "theme"), such
as statistics for a region or sets of regions. Examples include the locations of traffic accidents in a
city, or election results by state. Thematic maps have a wide vocabulary of cartographic symbols,
such as point symbols, dot distributions, "quiver" vectors, isolines, colored zones, raised prisms, and
continuous 3-D surfaces.

Choropleth and Classification Maps
Choropleth and classification maps use colors or patterns to represent attributes associated with
certain geographic regions.

• Choropleth maps indicate the values of numeric attributes within spatial regions by using colors
along a gradient. Choropleth maps are commonly used to illustrate population density within
specified regions. For examples of how to create choropleth maps, see “Create Choropleth Map of
Population Density” on page 6-96 and “Create Choropleth Map from Table Data” on page 6-88.

• Classification maps indicate the values of classified or categorical attributes within spatial regions
by using discrete colors. Classification maps are commonly used to illustrate climate classes, land
cover classes, and binned population density within specified regions. For an example of how to
create a classification map, see “Create Classification Map from Table Data” on page 6-92.

Scatter and Bubble Maps
Scatter and bubble plots display symbols at specified point locations. If the symbols are small and
inconspicuous and do not vary in size, the result is a dot-distribution map. If the symbols vary in size
and/or shape according to a vector of attribute values, the result is a proportional symbol map.

You can create scatter and bubble plots in these ways:

• Create scatter plots in map axes and geographic axes by using the geoscatter function.
• Create scatter plots in axesm-based maps by using the scatterm function.
• Create bubble plots in map axes and geographic axes by using the bubblechart function.
• Create a geographic bubble chart by using the geobubble function.
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Contour Maps
Contour and quiver plots can be useful in analyzing matrix data. This image shows contour elevation
lines and quiver plots over a topographical map of the Gulf of Mexico. The quiver plots illustrate the
gradient of the topographical matrix.

Create contour plots by using the contourm, contour3m, or contourfm function. Create 2-D or 3-D
quiver plots over axesm-based maps by using the quiverm or quiver3m function.

Stem Maps
Stem plots are 3-D geographic bar graphs portraying numeric attributes at point locations, usually on
vector base maps. Below is an example of a stem plot over a map of the continental United States.
The bars could represent anything from selected city populations to the number of units of a product
purchased at each location.

You can create stem plots over axesm-based maps by using the stem3m function.

See Also
Functions
geoplot
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Related Examples
• “Create Common Plots over Basemap Images” on page 6-58
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Create Choropleth Map from Table Data

This example shows how to create a choropleth map from spatial and attribute data contained in
tables. A choropleth map indicates the values of numeric attributes within spatial regions by using
colors along a gradient. Choropleth maps are commonly used to illustrate population density within
specified regions.

To create a classification map, where discrete colors indicate the values of classified or categorical
attributes, see “Create Classification Map from Table Data” on page 6-92.

Read Data into Tables

Read a comma-separated text file into a table. The file contains farmland statistics for each US state
and the District of Columbia, based on the National Agricultural Statistics Service (NASS) Farms and
Land in Farms 2019 Summary. For more information about the statistics, see [1] on page 6-91.
Display the first row of the table.

farms = readtable("farmland.txt","TextType","string");
farms(1,:)

ans=1×4 table
    StateName    NumberOfFarms    AcresInFarms    AverageFarmSize
    _________    _____________    ____________    _______________

    "Alabama"        38800            8300              214      

To create a map from the table, you also need spatial information. Read a shapefile containing
polygon shapes for each of the US states and the District of Columbia into a geospatial table. A
geospatial table has a Shape variable containing shape information for each row. Display the first row
of the geospatial table.

states = readgeotable("usastatelo.shp");
states(1,:)

ans=1×5 table
       Shape          Name       LabelLat    LabelLon    PopDens2000
    ____________    _________    ________    ________    ___________

    geopolyshape    "Alabama"     32.283     -86.921        87.6    

The Shape variable of the table contains geopolyshape objects, which are polygons in geographic
coordinates. Display the properties of the geopolyshape object in the first row.

states.Shape(1)

ans = 
  geopolyshape with properties:

              NumRegions: 1
                NumHoles: 0
                Geometry: "polygon"
    CoordinateSystemType: "geographic"
           GeographicCRS: [1×1 geocrs]
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Join Tables

The table of farmland statistics identifies the District of Columbia as Washington DC, which does not
match the corresponding row of the table of polygon shapes. Change the name in the table of
farmland statistics so that it matches the name in the table of polygon shapes.

dcRow = farms.StateName == "Washington DC";
farms.StateName(dcRow) = "District of Columbia";

Join the tables, using the state name variables Name and StateName as the key variables. Display the
first row of the joined table.

statesFarms = outerjoin(states,farms,"LeftKey","Name","RightKey","StateName");
statesFarms(1,:)

ans=1×9 table
       Shape          Name       LabelLat    LabelLon    PopDens2000    StateName    NumberOfFarms    AcresInFarms    AverageFarmSize
    ____________    _________    ________    ________    ___________    _________    _____________    ____________    _______________

    geopolyshape    "Alabama"     32.283     -86.921        87.6        "Alabama"        38800            8300              214      

For more information about how to combine vector data using table joins, see “Combine Vector Data
Using Table Joins” on page 2-23.

Create Choropleth Map

Create a choropleth map that shows the average farm size for each state in the conterminous US.

figure
rows = statesFarms.Name ~= "Hawaii" & statesFarms.Name ~= "Alaska";
statesFarmsConus = statesFarms(rows,:);
geoplot(statesFarmsConus,ColorVariable="AverageFarmSize");

Change the basemap. Add a title and a labeled colorbar.

geobasemap darkwater
title("Average Farm Size Per US State in 2019")
cb = colorbar;
cb.Label.String = "Size in Acres";

Change the colormap so that, as the average farm sizes increase, the colors of the states transition
from yellow to green.

cmap = flip(summer);
colormap(cmap)
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Export Map

Export the map to a PNG file.

gx = gca;
exportgraphics(gx,"AverageFarmSizeForUS.png")
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References

[1] National Agricultural Statistics Service. “Number of Farms, Land in Farms, and Average Farm
Size — States and United States: 2018–2019.” In Farms and Land in Farms 2019 Summary, 6. USDA,
February 2020. https://www.nass.usda.gov/Publications/Todays_Reports/reports/fnlo0220.pdf.

See Also
Functions
readgeotable | geoplot | colormap

Properties
Point Properties | Line Properties | Polygon Properties

Related Examples
• “Create Geospatial Tables” on page 2-18
• “Create Classification Map from Table Data” on page 6-92
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Create Classification Map from Table Data

The example shows how to create a classification map from spatial and attribute data contained in
tables. A classification map indicates the values of classified or categorical attributes within spatial
regions by using discrete colors. Classification maps are commonly used to illustrate climate classes,
land cover classes, and binned population density within specified regions.

To create a choropleth map, where colors along a gradient indicate the values of numeric attributes,
see “Create Choropleth Map from Table Data” on page 6-88.

Read Data into Tables

Read a comma-separated text file into a table. The file contains farmland statistics for each US state
and the District of Columbia, based on the National Agricultural Statistics Service (NASS) Farms and
Land in Farms 2019 Summary. For more information about the statistics, see [1] on page 6-95.
Display the first row of the table.

farms = readtable("farmland.txt","TextType","string");
farms(1,:)

ans=1×4 table
    StateName    NumberOfFarms    AcresInFarms    AverageFarmSize
    _________    _____________    ____________    _______________

    "Alabama"        38800            8300              214      

To create a map from the table, you also need spatial information. Read a shapefile containing
polygon shapes for each of the US states and the District of Columbia into a geospatial table. A
geospatial table has a Shape variable containing shape information for each row. Display the first row
of the geospatial table.

states = readgeotable("usastatelo.shp");
states(1,:)

ans=1×5 table
       Shape          Name       LabelLat    LabelLon    PopDens2000
    ____________    _________    ________    ________    ___________

    geopolyshape    "Alabama"     32.283     -86.921        87.6    

The Shape variable of the table contains geopolyshape objects, which are polygons in geographic
coordinates. Display the properties of the geopolyshape object in the first row.

states.Shape(1)

ans = 
  geopolyshape with properties:

              NumRegions: 1
                NumHoles: 0
                Geometry: "polygon"
    CoordinateSystemType: "geographic"
           GeographicCRS: [1×1 geocrs]
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Join Tables

The table of farmland statistics identifies the District of Columbia as Washington DC, which does not
match the corresponding row of the table of polygon shapes. Change the name in the table of
farmland statistics so that it matches the name in the table of polygon shapes.

dcRow = farms.StateName == "Washington DC";
farms.StateName(dcRow) = "District of Columbia";

Join the tables, using the state name variables Name and StateName as the key variables. Display the
first row of the joined table.

statesFarms = outerjoin(states,farms,"LeftKey","Name","RightKey","StateName");
statesFarms(1,:)

ans=1×9 table
       Shape          Name       LabelLat    LabelLon    PopDens2000    StateName    NumberOfFarms    AcresInFarms    AverageFarmSize
    ____________    _________    ________    ________    ___________    _________    _____________    ____________    _______________

    geopolyshape    "Alabama"     32.283     -86.921        87.6        "Alabama"        38800            8300              214      

For more information about how to combine vector data using table joins, see “Combine Vector Data
Using Table Joins” on page 2-23.

Discretize Data

Group the average farm size for each state into 4 bins of type categorical. View the unique bins.

n = 4;
[BinnedAverageFarmSize,E] = discretize(statesFarms.AverageFarmSize,n,"categorical");
bins = unique(BinnedAverageFarmSize)

bins = 4×1 categorical
     [0, 700) 
     [700, 1400) 
     [1400, 2100) 
     [2100, 2800] 

Add the binned data to the geospatial table.

statesFarms = addvars(statesFarms,BinnedAverageFarmSize);

Create Map

Display the binned average farm size for states in the conterminous US by creating a classification
map with a legend.

Set up a topographic map.

figure
geobasemap topographic
hold on

To include each bin in the legend as a separate data series, you must separately plot the states within
each bin. For each bin:
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• Find the indices of the table rows that are associated with the bin.
• Extract the rows into a subtable.
• Plot the data within the subtable, using the bin as the display name.

for k = 1:n
    idx = statesFarms.BinnedAverageFarmSize == bins(k);
    subT = statesFarms(idx,:);
    geoplot(subT,DisplayName=string(bins(k)))
end

Update the geographic limits to include the region surrounding the conterminous US. Add a title and
legend.

geolimits([27 52],[-130 -60])
title("Average Farm Size Per US State in 2019")
lgd = legend;
title(lgd,"Size in Acres")

Change the colormap and increase the opacity of the states.

gx = gca;
gx.ColorOrder = parula(n);
alpha(0.75)

Export Map

Export the map to a PNG file.
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gx = gca;
exportgraphics(gx,"AverageFarmSizeClassification.png")

References

[1] National Agricultural Statistics Service. “Number of Farms, Land in Farms, and Average Farm
Size — States and United States: 2018–2019.” In Farms and Land in Farms 2019 Summary, 6. USDA,
February 2020. https://www.nass.usda.gov/Publications/Todays_Reports/reports/fnlo0220.pdf.

See Also
Functions
readgeotable | geoplot | colormap

Properties
Point Properties | Line Properties | Polygon Properties

Related Examples
• “Create Geospatial Tables” on page 2-18
• “Create Choropleth Map from Table Data” on page 6-88
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Create Choropleth Map of Population Density

Create a choropleth map of population density for several US states in the year 2000. A choropleth
map indicates the values of numeric attributes within spatial regions by using colors along a gradient.

This page shows how to create similar maps using map axes (since R2023a) and axesm-based maps.
For a comparison of map axes and axesm-based maps, including when to use each type of display, see
“Choose a 2-D Map Display” on page 4-2.

Prepare Data

Prepare the data to use in the examples.

Import a shapefile containing population density data for each US state. The shapefile represents the
states using polygon shapes in geographic coordinates.

states = readgeotable("usastatelo.shp");

Create a subtable that includes New York and the states in New England.

names = ["New York" "Maine" "New Hampshire" "Vermont" "Massachusetts" ...
    "Connecticut" "Rhode Island"];
rows = ismember(states.Name,names);
NEstates = states(rows,:);

Create Map Using Map Axes

Create a choropleth map using a map axes object.

Set up a map using a projected coordinate reference system (CRS) that is appropriate for the
conterminous United States. Create the CRS using the EPSG code 26918, which uses a Transverse
Mercator projection.

figure
proj = projcrs(26918);
newmap(proj)

Display the state polygons on the map. Specify the colors using the population data in the table.

geoplot(NEstates,ColorVariable="PopDens2000")

Create a colormap with colors that transition from yellow to red. Apply the colormap to the map axes.
Then, add a color bar and a title.

cmap = flipud(autumn(height(NEstates)));
colormap(cmap)

colorbar
title("Population Density in 2000")

Adjust the geographic limits.

geolimits([40 48],[-76 -68])
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Create Map Using axesm-Based Map

Create a map using a projection that is appropriate for the conterminous United States. Use an
Albers Equal Area Conic projection, and specify latitude and longitude limits for a region in the
northeast United States.

figure
axesm("MapProjection","eqaconic","MapParallels",[], ...
  "MapLatLimit",[41 48],"MapLonLimit",[-74 -66])

Assign colors to the polygons based on the population density by creating a symbol specification.
Specify the colors using a colormap that transitions from yellow to red.

maxdensity = max([NEstates.PopDens2000]);
cmap = flipud(autumn(height(NEstates)));
polyColors = makesymbolspec("Polygon", ...
    {"PopDens2000",[0 maxdensity],"FaceColor",cmap});

Display the state polygons on the map. Specify the colors using the symbol specification.

geoshow(NEstates,"SymbolSpec",polyColors)

Apply the colormap to the axes. Then, add a color bar and a title.

colormap(cmap)

colorbar
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clim([0 maxdensity])
title("Population Density in 2000")

See Also
Functions
newmap | geoplot | axesm | geoshow | colormap

Related Examples
• “Create Choropleth Map from Table Data” on page 6-88
• “Create Classification Map from Table Data” on page 6-92
• “Create Map of Quadrangle Using Cartographic Map Layout” on page 6-19
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Manipulating Geospatial Data

For some purposes, geospatial data is fine to use as is. Sooner or later, though, you need to extract,
combine, massage, and transform geodata. This chapter discusses some Mapping Toolbox tools and
techniques provided for such purposes.

• “Geographic Interpolation of Vectors” on page 7-2
• “Vector Intersections” on page 7-4
• “Polygon Set Logic” on page 7-6
• “Polygon Buffer Zones” on page 7-7
• “Simplify Vector Coordinate Data” on page 7-10
• “Convert Vector Data to Raster Format” on page 7-11
• “Data Grids as Logical Variables” on page 7-16
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Geographic Interpolation of Vectors
When using vector data, remember that, like raster data, coordinates are sampled measurements.
This involves unavoidable assumptions concerning what the geographic reality is between specified
data points. The normal assumption when plotting vector data requires that points be connected with
straight line segments, which essentially indicates a lack of knowledge about conditions between the
measured points. For lines that are by nature continuous, such as most rivers and coastlines, such
piecewise linear interpolation can be false and misleading, as the following figure depicts.

Interpolating Sparse Vector Data

Despite the possibility of misinterpretation, circumstances do exist in which geographic data
interpolation is useful or even necessary. To do this, use the interpm function to interpolate between
known data points. One value of linearly interpolating points is to fill in lines of constant latitude or
longitude (e.g., administrative boundaries) that can curve when projected.

interpm returns both the original data and new linearly interpolated points. Sometimes, however,
you might want only the interpolated values. The functions intrplat and intrplon work similarly
to the MATLAB interp1 function, and give you control over the method used for interpolation. Note
that they only interpolate and return one value at a time. Use intrplat to interpolate a latitude for a
given longitude. Given a monotonic set of longitudes and their matching latitude points, you can
interpolate a new latitude for a longitude you specify, interpolating along linear, spline, cubic, rhumb
line, or great circle paths. The longitudes must increase or decrease monotonically. If this is not the
case, you might be able to use the intrplon companion function if the latitude values are
monotonic. The following diagram illustrates these three types of interpolation. The intrplat
function also can perform spline and cubic spline interpolations.
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Three Types of Interpolation
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Vector Intersections
Mapping Toolbox includes a set of functions that calculate the intersections of vector data, such as
great circles, small circles, and rhumb line tracks. The functions also determine intersections of
arbitrary vector data.

Function Description
gcxgc Find intersection points for pairs of great circles on the sphere
scxsc Find intersection points for pairs of small circles on the sphere
rhxrh Find intersection points, if any, for pairs of rhumb lines
gcxsc Find intersection points, if any, between a great circle and a small

circle on the sphere
polyxpoly Find intersection points for lines or polygon edges in the plane

In general, small circles intersect twice or never, as shown in the following figure. For the case of
exact tangency, scxsc returns two identical intersection points.

To illustrate finding the intersection of rhumb lines, imagine a ship setting sail from Norfolk, Virginia
(37°N,76°W), maintaining a steady due-east course (90°), and another ship setting sail from Dakar,
Senegal (15°N,17°W), with a steady northwest course (315°). Where would the tracks of the two
vessels cross? The intersection of the tracks is at (37°N,41.7°W), which is roughly 600 nautical miles
west of the Azores in the Atlantic Ocean.
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Polygon Set Logic
Polygon set operations are used to answer a variety of questions about logical relationships of vector
data polygon objects. Standard set operations include intersection, union, subtraction, and an
exclusive OR operation. The polybool function performs these operations on two sets of vectors,
which can represent x-y or latitude-longitude coordinate pairs. In computing points where boundaries
intersect, interpolations are carried out on the coordinates as if they were planar. Here is an example
that shows all the available operations.

The result is returned as NaN-clipped vectors by default. In cases where it is important to distinguish
outer contours of polygons from interior holes, polybool can also accept inputs and return outputs
as cell arrays. In the cell array format, a cell array entry starts with the list of points making up the
outer contour. Subsequent NaN-clipped faces within the cell entry are interpreted as interior holes.
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Polygon Buffer Zones
A buffer zone is the area within a specified distance of a map feature. For vector geodata, buffer
zones are constructed as polygons. A buffer zone can be defined as the locus of points within a
certain distance of the boundary of the feature polygon, either inside or outside the polygon. Buffer
zones form equidistant contour lines around objects.

The bufferm function computes and returns vectors that represent a set of points that define a
buffer zone. It forms the buffer by placing small circles at the vertices of the polygon and rectangles
along each of its line segments, and applying a polygon union set operation to these objects.

Generate Buffer Internal to Polygon

This example shows how to use the bufferm function to generate a buffer zone internal to a land
area polygon.

Import Madagascar polygon shape.

madagascar = shaperead('landareas.shp','UseGeoCoords',true, ...
    'Selector', {@(name)strcmpi(name,'Madagascar'),'Name'});

Create a map showing Madagascar.

figure
worldmap('madagascar')
geoshow(madagascar)
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Use bufferm to create a buffer zone that extends 0.75 degrees inland from the coast of Madagascar.

madlat = madagascar.Lat;
madlon = madagascar.Lon;
bufwidth = 0.75;
direction = 'in';
[latbuf,lonbuf] = bufferm(madlat,madlon,bufwidth,direction);

Show the buffer zone in green.

geoshow(latbuf,lonbuf,'DisplayType','polygon','FaceColor','green')
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Simplify Vector Coordinate Data
Avoiding visual clutter in composing maps is an essential part of cartographic presentation. In
cartography, this is described as map generalization, which involves coordinating many techniques,
both manual and automated. Limiting the number of points in vector geodata is an important part of
generalizing maps, and is especially useful for conditioning cartographic data, plotting maps at small
scales, and creating versions of geodata for use at small scales.

An easy, but naive, approach to point reduction is to discard every nth element in each coordinate
vector (simple decimation). However, this can result in poor representations of the original shapes.
The toolbox provides a function to eliminate insignificant geometric detail in linear and polygonal
objects, while still maintaining accurate representations of their shapes. The reducem function
implements a powerful line simplification algorithm (known as Douglas-Peucker) that intelligently
selects and deletes visually redundant points.

The reducem function takes latitude and longitude vectors, plus an optional linear tolerance
parameter as arguments, and outputs reduced (simplified) versions of the vectors, in which deviations
perpendicular to local "trend lines" in the vectors are all greater than the tolerance criterion.
Endpoints of vectors are preserved. Optional outputs are an error measure and the tolerance value
used (it is computed when you do not supply a value).

Note Simplified line data might not always be appropriate for display. If all or most intermediate
points in a feature are deleted, then lines that appear straight in one projection can be incorrectly
displayed as straight lines in others, and separate lines can be caused to intersect. In addition, when
you are reducing data over large world regions, the effective degree of reduction near the poles are
less than that achieved near the equator, due to the fact that the algorithm treats geographic
coordinates as if they were planar.
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Convert Vector Data to Raster Format
You can convert latitude-longitude vector data to a grid at any resolution you choose to make a raster
base map or grid layer. Certain Mapping Toolbox GUI tools help you do some of this, but you can also
perform vector-to-raster conversions from the command line. The principal function for gridding
vector data is vec2mtx, which allocates lines to a grid of any size you indicate, marking the lines with
1s and the unoccupied grid cells with 0s. The grid contains doubles, but if you want a logical grid (see
“Data Grids as Logical Variables” on page 7-16) cast the result to be a logical array. To see an
example, view “Creating Data Grids from Vector Data” on page 7-11.

If the vector data consists of polygons (patches), the gridded outlines are all hollow. You can
differentiate them using the encodem function, calling it with an array of rows, columns, and seed
values to produce a new grid containing polygonal areas filled with the seed values to replace the
binary values generated by vec2mtx.

Creating Data Grids from Vector Data

This example shows how to convert vector data to raster data using the vec2mtx function. The
example uses patch data for Indiana from the usastatehi shapefile. For more information, see
“Convert Vector Data to Raster Format” on page 7-11.

Use shaperead to get the patch data for the boundary.

indiana = shaperead('usastatehi.shp',...
    'UseGeoCoords', true,...
    'Selector', {@(name)strcmpi('Indiana',name),'Name'});
inLat = indiana.Lat;
inLon = indiana.Lon;

Convert the vectors to a regular data grid using vec2mtx. Set the grid density to be 40 cells per
degree. Rasterize the boundary and generate a geographic raster reference object for it.

gridDensity = 40;
[inGrid,R] = vec2mtx(inLat,inLon,gridDensity);

Make a map of the data grid in contrasting colors.

figure
axesm eqdcyl
meshm(inGrid,R)
colormap jet(4)
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Set up the map limits.

setm(gca,'Flatlimit',R.LatitudeLimits,'FlonLimit',R.LongitudeLimits)
tightmap
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Specify the seed point and seed value. To fill (recode) the interior of Indiana, you need a seed point
(which must be identified by row and column) and a seed value (to be allocated to all cells within the
polygon). Select the middle row and column of the grid and choose an index value of 3 to identify the
territory when calling encodem to generate a new grid. The last argument (1) identifies the code for
boundary cells, where filling should halt.

inPt = round([size(inGrid)/2,3]);
inGrid3 = encodem(inGrid,inPt,1);

Clear and redraw the map using the filled grid.

meshm(inGrid3,R)
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Plot the original vectors on the grid to see how well data was rasterized. You can use the Zoom tool
on the figure window to examine the gridding results more closely.

plotm(inLat,inLon,'k')
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Data Grids as Logical Variables
You can apply logical criteria to numeric data grids to create logical grids. Logical grids are data
grids consisting entirely of 1s and 0s. You can create them by performing logical tests on data grid
variables. The resulting binary grid is the same size as the original grid(s) and can use the same
referencing vector, as the following hypothetical data operation illustrates:

logicalgrid = (realgrid > 0);

This transforms all values greater than 0 into 1s and all other values to 0s. You can apply multiple
conditions to a grid in one operation:

logicalgrid = (realgrid >- 100)&(realgrid < 100);

If several grids are the same size and share the same referencing vector (i.e., the grids are co-
registered), you can create a logical grid by testing joint conditions, treating the individual data grids
as map layers:

logicalgrid = (population > 10000)&(elevation < 400)&...
              (country == nigeria);

Several Mapping Toolbox functions enable the creation of logical grids using logical and relational
operators. Grids resulting from such operations contain logical rather than numeric values (which
reduce storage by a factor of 8), but might need to be cast to double in order to be used in certain
functions. Use the ones and zeros functions to create grids of all 1s and all 0s.
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Using Map Projections and Coordinate
Systems

All geospatial data must be flattened onto a display surface in order to visually portray what exists
where. The mathematics and craft of map projection are central to this process. Although there is no
limit to the ways geodata can be projected, conventions, constraints, standards, and applications
generally prescribe its usage. This chapter describes what map projections are, how they are
constructed and controlled, their essential properties, and some possibilities and limitations.

• “Map Projections and Distortions” on page 8-2
• “Quantitative Properties of Map Projections” on page 8-4
• “The Three Main Families of Map Projections” on page 8-5
• “Projection Aspect” on page 8-9
• “Projection Parameters” on page 8-16
• “Visualize Spatial Error Using Tissot Indicatrices” on page 8-22
• “Quantify Map Distortions at Point Locations” on page 8-26
• “Rotational Transformations on the Globe” on page 8-30
• “Create a UTM Map” on page 8-34
• “Set UTM Parameters Interactively” on page 8-38
• “Work in UTM Without a Displayed Map” on page 8-41
• “Use the Transverse Aspect to Map Across UTM Zones” on page 8-43
• “Summary and Guide to Projections” on page 8-45
• “Transform Coordinates to a Different Projected CRS” on page 8-58
• “Project and Display Raster Data” on page 8-61

If you are not acquainted with the types, properties, and uses of map projections, read the first four
sections. When constructing maps—especially in an environment in which a variety of projections are
readily available—it is important to understand how to evaluate projections to select one appropriate
to the contents and purpose of a given map.
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Map Projections and Distortions
Humans have known that the shape of the Earth resembles a sphere and not a flat surface since
classical times, and possibly much earlier than that. If the world were indeed flat, cartography would
be much simpler because map projections would be unnecessary.

A map projection is a procedure that flattens a curved surface such as the Earth onto a plane. Usually
this is done through an intermediate surface such as a cylinder or a cone, which is then unwrapped to
lie flat. Consequently, map projections are classified as cylindrical, conical, and azimuthal (a direct
transformation of the surface of part of a spheroid to a circle). See “The Three Main Families of Map
Projections” on page 8-5 for discussions and illustrations of how these transformations work. The
toolbox can project both vector data and raster data.

Get a map projection by using a projcrs object. For example, get information about a raster data file
by creating a RasterInfo object. Then, find the projection method by querying the
CoordinateReferenceSystem property of the object.

info = georasterinfo('boston.tif');
info.CoordinateReferenceSystem.ProjectionMethod

ans = 

    "Lambert Conic Conformal (2SP)"

Alternatively, Mapping Toolbox includes a library of map projections that you can control with axesm
and defaultm. Some are suitable for showing the entire world, others for half of it, and some are
only useful over small areas. For more information, see “Projection Distortions” on page 8-2. For a
list of available projections, see “Summary and Guide to Projections” on page 8-45. If you want to
use a projection that is not included in this list, create a projcrs object instead.

Project coordinates by using the projfwd function and unproject coordinates using the projinv
function.

Use Inverse Projection to Recover Geographic Coordinates
When geospatial data has plane coordinates (i.e., it comes preprojected, as do many satellite images
and municipal map data sets), it is usually possible to recover geographic coordinates if the
projection parameters and datum are known. Using this information, you can perform an inverse
projection, running the projection backward to solve for latitude and longitude. The toolbox can
perform accurate inverse projections for any of its projection functions as long as the original
projection parameters and reference ellipsoid (or spherical radius) are provided to it.

Note Converting a position given in latitude-longitude to its equivalent in a projected map coordinate
system involves converting from units of angle to units of length. Likewise, unprojecting a point
position changes its units from those of length to those of angle). Unit conversion functions such as
deg2km and km2deg also convert coordinates between angles and lengths, but do not transform the
space they inhabit. You cannot use them to project or unproject coordinate data.

Projection Distortions
All map projections introduce distortions compared to maps on globes. Distortions are inherent in
flattening the sphere, and can take several forms:
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• Areas — Relative size of objects (such as continents)
• Directions — Azimuths (angles between points and the poles)
• Distances — Relative separations of points (such as a set of cities)
• Shapes — Relative lengths and angles of intersection

Some classes of map projections maintain areas, and others preserve local shapes, distances, or
directions. No projection, however, can preserve all these characteristics. Choosing a projection thus
always requires compromising accuracy in some way, and that is one reason why so many different
map projections have been developed. For any given projection, however, the smaller the area being
mapped, the less distortion it introduces if properly centered. Mapping Toolbox tools help you to
quantify and visualize projection distortions.
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See Also

More About
• “Quantitative Properties of Map Projections” on page 8-4
• “Projection Parameters” on page 8-16
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Quantitative Properties of Map Projections
A sphere, unlike a polyhedron, cone, or cylinder, cannot be reformed into a plane. In order to portray
the surface of a round body on a two-dimensional flat plane, you must first define a developable
surface (i.e., one that can be cut and flattened onto a plane without stretching or creasing) and devise
rules for systematically representing all or part of the spherical surface on the plane. Any such
process inevitably leads to distortions of one kind or another. Five essential characteristic properties
of map projections are subject to distortion: shape, distance, direction, scale, and area. No projection
can retain more than one of these properties over a large portion of the Earth. This is not because a
sufficiently clever projection has yet to be devised; the task is physically impossible. The technical
meanings of these terms are described below.

• Shape (also called conformality)

Shape is preserved locally (within "small" areas) when the scale of a map at any point on the map
is the same in any direction. Projections with this property are called conformal. In them,
meridians (lines of longitude) and parallels (lines of latitude) intersect at right angles. An older
term for conformal is orthomorphic (from the Greek orthos, straight, and morphe, shape).

• Distance (also called equidistance)

A map projection can preserve distances from the center of the projection to all other places on
the map (but from the center only). Such a map projection is called equidistant. Maps are also
described as equidistant when the separation between parallels is uniform (e.g., distances along
meridians are maintained). No map projection maintains distance proportionality in all directions
from any arbitrary point.

• Direction

A map projection preserves direction when azimuths (angles from the central point or from a point
on a line to another point) are portrayed correctly in all directions. Many azimuthal projections
have this property.

• Scale

Scale is the ratio between a distance portrayed on a map and the same extent on the Earth. No
projection faithfully maintains constant scale over large areas, but some are able to limit scale
variation to one or two percent.

• Area (also called equivalence)

A map can portray areas across it in proportional relationship to the areas on the Earth that they
represent. Such a map projection is called equal-area or equivalent. Two older terms for equal-
area are homolographic or homalographic (from the Greek homalos or homos, same, and graphos,
write), and authalic (from the Greek autos, same, and ailos, area), and equireal. Note that no map
can be both equal-area and conformal.

For a complete description of the properties that specific map projections maintain, see “Summary
and Guide to Projections” on page 8-45.
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The Three Main Families of Map Projections

In this section...
“Unwrapping the Sphere to a Plane” on page 8-5
“Cylindrical Projections” on page 8-5
“Conic Projections” on page 8-6
“Azimuthal Projections” on page 8-7

Unwrapping the Sphere to a Plane
Mapmakers have developed hundreds of map projections, over several thousand years. Three large
families of map projection, plus several smaller ones, are generally acknowledged. These are based
on the types of geometric shapes that are used to transfer features from a sphere or spheroid to a
plane. Map projections are based on developable surfaces, and the three traditional families consist
of cylinders, cones, and planes. They are used to classify the majority of projections, including some
that are not analytically (geometrically) constructed. In addition, a number of map projections are
based on polyhedra. While polyhedral projections have interesting and useful properties, they are not
described in this guide.

Which developable surface to use for a projection depends on what region is to be mapped, its
geographical extent, and the geometric properties that areas, boundaries, and routes need to have,
given the purpose of the map. The following sections describe and illustrate how the cylindrical,
conic, and azimuthal families of map projections are constructed and provides some examples of
projections that are based on them.

Cylindrical Projections
A cylindrical projection is produced by wrapping a cylinder around a globe representing the Earth.
The map projection is the image of the globe projected onto the cylindrical surface, which is then
unwrapped into a flat surface. When the cylinder aligns with the polar axis, parallels appear as
horizontal lines and meridians as vertical lines. Cylindrical projections can be either equal-area,
conformal, or equidistant. The following figure shows a regular cylindrical or normal aspect
orientation in which the cylinder is tangent to the Earth along the Equator and the projection radiates
horizontally from the axis of rotation. The projection method is diagrammed on the left, and an
example is given on the right (equal-area cylindrical projection, normal/equatorial aspect).
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For a description of projection aspect, see “Projection Aspect” on page 8-9.

Some widely used cylindrical map projections are

• Equal-area cylindrical projection
• Equidistant cylindrical projection
• Mercator projection
• Miller projection
• Plate Carrée projection
• Universal transverse Mercator projection

Pseudocylindrical Map Projections

All cylindrical projections fill a rectangular plane. Pseudocylindrical projection outlines tend to be
barrel-shaped rather than rectangular. However, they do resemble cylindrical projections, with
straight and parallel latitude lines, and can have equally spaced meridians, but meridians are curves,
not straight lines. Pseudocylindrical projections can be equal-area, but are not conformal or
equidistant.

Some widely-used pseudocylindrical map projections are

• Eckert projections (I-VI)
• Goode homolosine projection
• Mollweide projection
• Quartic authalic projection
• Robinson projection
• Sinusoidal projection

Conic Projections
A conic projection is derived from the projection of the globe onto a cone placed over it. For the
normal aspect, the apex of the cone lies on the polar axis of the Earth. If the cone touches the Earth
at just one particular parallel of latitude, it is called tangent. If made smaller, the cone will intersect
the Earth twice, in which case it is called secant. Conic projections often achieve less distortion at
mid- and high latitudes than cylindrical projections. A further elaboration is the polyconic projection,
which deploys a family of tangent or secant cones to bracket a succession of bands of parallels to
yield even less scale distortion. The following figure illustrates conic projection, diagramming its
construction on the left, with an example on the right (Albers equal-area projection, polar aspect).
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Some widely-used conic projections are

• Albers Equal-area projection
• Equidistant projection
• Lambert conformal projection
• Polyconic projection

Azimuthal Projections
An azimuthal projection is a projection of the globe onto a plane. In polar aspect, an azimuthal
projection maps to a plane tangent to the Earth at one of the poles, with meridians projected as
straight lines radiating from the pole, and parallels shown as complete circles centered at the pole.
Azimuthal projections (especially the orthographic) can have equatorial or oblique aspects. The
projection is centered on a point, that is either on the surface, at the center of the Earth, at the
antipode, some distance beyond the Earth, or at infinity. Most azimuthal projections are not suitable
for displaying the entire Earth in one view, but give a sense of the globe. The following figure
illustrates azimuthal projection, diagramming it on the left, with an example on the right
(orthographic projection, polar aspect).
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Some widely used azimuthal projections are

• Equidistant azimuthal projection
• Gnomonic projection
• Lambert equal-area azimuthal projection
• Orthographic projection
• Stereographic projection
• Universal polar stereographic projection
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Projection Aspect
A map projection's aspect is its orientation on the page or display screen. If north or south is straight
up, the aspect is said to be equatorial; for most projections this is the normal aspect. When the
central axis of the developable surface is oriented east-west, the projection's aspect is transverse.
Projections centered on the North Pole or the South Pole have a polar aspect, regardless of what
meridian is up. All other orientations have an oblique aspect. So far, the examples and discussions of
map displays have focused on the normal aspect, by far the most commonly used. This section
discusses the use of transverse, oblique, and skew-oblique aspects. For an example, see “Control the
Map Projection Aspect with an Orientation Vector” on page 8-11.

Projection aspect is primarily of interest in the display of maps. However, this section also discusses
how the idea of projection aspect as a coordinate system transformation can be applied to map
variables for analytical purposes.

Note The projection aspect discussed in this section is different from the Aspect property of axesm-
based maps. The Aspect property of axesm-based maps controls the orientation of the figure axes.
For instance, if a map is in a normal setting with a landscape orientation, a switch to a transverse
aspect rotates the axes by 90°, resulting in a portrait orientation. To display a map in the transverse
aspect, combine the transverse aspect property with a -90° skew angle. The skew angle is the last
element of the Origin parameter. For example, a [0 0 -90] vector would produce a transverse
map.

The Orientation Vector
The Origin property of axesm-based maps is a vector describing the geometry of the displayed
projection. This property is called an orientation vector (prior versions called it the origin vector). The
vector takes this form:

orientvec = [latitude longitude orientation]

The latitude and longitude represent the geographic coordinates of the center point of the display
from which the projection is calculated. The orientation refers to the clockwise angle from straight up
at which the North Pole points from this center point. The default orientation vector is [0 0 0]; that
is, the projection is centered on the geographic point (0°,0°) and the North Pole is straight up from
this point. Such a display is in a normal aspect. Changes to only the longitude value of the orientation
vector do not change the aspect; thus, a normal aspect is one centered on the Equator in latitude with
an orientation of 0°.

Both of these Miller projections have normal aspects, despite having different orientation vectors:
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This makes sense if you think about a simple, true cylindrical projection. This is the projection of the
globe onto a cylinder wrapped around it. For normal aspects, this cylinder is tangent to the globe at
the Equator, and changing the origin longitude simply corresponds to rotating the sphere about the
longitudinal axis of the cylinder. If you continue with the wrapped-cylinder model, you can understand
the other aspects as well.

Following this description, a transverse projection can be thought of as a cylinder wrapped around
the globe tangent at the poles and along a meridian and its antipodal meridian. Finally, when such a
cylinder is tangent along any great circle other than a meridian, the result is an oblique projection.

Here are diagrams of the four cylindrical map orientations, or aspects:
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Of course, few projections are true cylindrical projections, but the concept of the wrapped cylinder is
nonetheless a convenient way to describe aspect.

For an example that uses the orientation vector, see “Control the Map Projection Aspect with an
Orientation Vector” on page 8-11.

Control the Map Projection Aspect with an Orientation Vector

The best way to gain an understanding of projection aspect is to experiment with orientation vectors.
The following example uses a pseudocylindrical projection, the sinusoidal.

Create a default axesm-based map in a sinusoidal projection, turn on the graticule, and display the
coast data set as filled polygons. The continents and graticule appear in normal aspect.

figure
axesm sinusoid
framem on
gridm on
tightmap tight
load coastlines
patchm(coastlat,coastlon,'g')
title('Normal aspect: orientation vector = [0 0 0]')
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Inspect the orientation vector from the axesm-based map. By default, the origin is set at (0°E, 0°N),
oriented 0° from vertical.

getm(gca,'Origin')

ans = 1×3

     0     0     0

In the normal aspect, the North Pole is at the top of the image. To create a transverse aspect, imagine
pulling the North Pole down to the center of the display, which was originally occupied by the point
(0°,0°). Do this by setting the first element of Origin parameter to a latitude of 90°N. The shape of
the frame is unaffected. This is still a sinusoidal projection.

setm(gca,'Origin',[90 0 0])
title('Transverse aspect: orientation vector = [90 0 0]')
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The normal and transverse aspects can be thought of as limiting conditions. Anything else is an
oblique aspect. Conceptually, if you push the North Pole halfway back to its original position, that is,
to the position originally occupied by the point (45°N, 0°E) in the normal aspect, the result is a simple
oblique aspect. You can think of this as pulling the new origin (45°N, 0°) to the center of the image,
the place that (0°,0°) occupied in the normal aspect.

setm(gca,'Origin',[45 0 0])
title('Oblique aspect: orientation vector = [45 0 0]')
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The previous examples of projection aspect kept the aspect orientation at 0°. If you alter the
orientation, an oblique aspect becomes a skew-oblique orientation. Imagine the previous example
with an orientation of 45°. Think of this as pulling the new origin (45°N,0°E), down to the center of
the projection and then rotating the projection until the North Pole lies at an angle of 45° clockwise
from straight up with respect to the new origin. As in the previous example, the location (45°N,0°E)
still occupies the center of the map.

setm(gca,'Origin',[45 0 45])
title('Skew-Oblique aspect: orientation vector = [45 0 45]')
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The base projection can be thought of as a standard coordinate system, and the normal aspect
conforms to it. The features of a projection are maintained in any aspect, relative to the base
projection. As the preceding illustrations show, the outline (frame) does not change. Nondirectional
projection characteristics also do not change. For example, the sinusoidal projection is equal-area, no
matter what its aspect. Directional characteristics must be considered carefully, however. In the
normal aspect of the sinusoidal projection, scale is true along every parallel and the central meridian.
This is not the case for the skew-oblique aspect; however, scale is true along the paths of the
transformed parallels and meridian.

Any projection can be viewed in alternate aspects and this can often be quite useful. For example, the
transverse aspect of the Mercator projection is widely used in cartography, especially for mapping
regions with predominantly north-south extent. One candidate for such handling might be Chile.
Oblique Mercator projections might be used to map long regions that run neither north and south nor
east and west, such as New Zealand.
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Projection Parameters
Every projection has at least one parameter that controls how it transforms geographic coordinates
into planar coordinates. Some projections are rather fixed, and aside from the orientation vector and
nominal scale factor, have no parameters that the user should vary, as to do so would violate the
definition of the projection. For example, the Robinson projection has one standard parallel that is
fixed by definition at 38° North and South; the Cassini and Wetch projections cannot be constructed
in other than Normal aspect. In general, however, projections have several variable parameters. The
following section discusses map projection parameters and provides guidance for setting them.

Projection Characteristics Maps Can Have
In addition to the name of the projection itself, the parameters that a map projection can have are

• Aspect — Orientation of the projection on the display surface
• Center or Origin — Latitude and longitude of the midpoint of the display
• Scale Factor — Ratio of distance on the map to distance on the ground
• Standard Parallel(s) — Chosen latitude(s) where scale distortion is zero
• False Northing — Planar offset for coordinates on the vertical map axis
• False Easting — Planar offset for coordinates on the horizontal map axis
• Zone — Designated latitude-longitude quadrangle used to systematically partition the planet for

certain classes of projections

While not all projections require all these parameters, there will always be a projection aspect, origin,
and scale.

Other parameters are associated with the graphic expression of a projection, but do not define its
mathematical outcome. These include

• Map latitude and longitude limits
• Frame latitude and longitude limits

However, as certain projections are unable to map an entire planet, or become very distorted over
large regions, these limits are sometimes a necessary part of setting up a projection.

Determining Projection Parameters

In the following exercise, you define an axesm-based map and examine default parameters for a
cylindrical, a conic, and an azimuthal projection.

1 Set up a default Mercator projection (which is cylindrical) and pass its handle to the getm
function to query projection parameters:

figure;
h=axesm('Mapprojection','mercator','Grid','on','Frame','on',...
'MlabelParallel',0,'PlabelMeridian',0,'mlabellocation',60,...
'meridianlabel','on','parallellabel','on')

The graticule and frame for the default map projection are shown below.
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2 Query the handle of the axesm-based map using getm to inspect the properties that pertain to
map projection parameters. The principal ones are aspect, origin, scalefactor,
nparallels, mapparallels, falsenorthing, falseeasting, zone, maplatlimit,
maplonlimit, rlatlimit, and flonlimit:

getm(h,'aspect')

ans =
     normal

getm(h,'origin')

ans =
     0     0     0

getm(h,'scalefactor')

ans =
     1

getm(h,'nparallels')

ans =
     1

getm(h,'mapparallels')

ans =
     0

getm(h,'falsenorthing')

ans =
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     0

getm(h,'falseeasting')

ans =
     0

getm(h,'zone')

ans =
     []

getm(h,'maplatlimit')

ans =
   -86    86

getm(h,'maplonlimit')

ans =
  -180   180

getm(h,'Flatlimit')

ans =
   -86    86

getm(h,'Flonlimit')

ans =
  -180   180

For more information on these and other properties of axesm-based maps, see axesm-Based Map
Properties.

3 Reset the projection type to equal-area conic ('eqaconic'). The figure is redrawn to reflect the
change. Determine the parameters that the toolbox changes in response:

setm(h,'Mapprojection', 'eqaconic')
getm(h,'aspect')

ans =
normal

getm(h,'origin')

ans =
     0     0     0

getm(h,'scalefactor')

ans =
     1

getm(h,'nparallels')

ans =
     2
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getm(h,'mapparallels')

ans =
    15    75

getm(h,'falsenorthing')

ans =
     0

getm(h,'falseeasting')

ans =
     0

getm(h,'zone')

ans =
     []

getm(h,'maplatlimit')

ans =
   -86    86

getm(h,'maplonlimit')

ans =
  -135   135

getm(h,'Flatlimit')

ans =
   -86    86

getm(h,'Flonlimit')

ans =
  -135   135

The eqaconic projection has two standard parallels, at 15° and 75°. It also has reduced
longitude limits (covering 270° rather than 360°). The resulting eqaconic graticule is shown
below.

4 Now set the projection type to Stereographic ('stereo') and examine the same properties as
you did for the previous projections:
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setm(h,'Mapprojection','stereo')
setm(gca,'MLabelParallel',0,'PLabelMeridian',0)
getm(h,'aspect')

ans =
normal

getm(h,'origin')

ans =
     0     0     0

getm(h,'scalefactor')

ans =
     1

getm(h,'nparallels')

ans =
     0

getm(h,'mapparallels')

ans =
     []

getm(h,'falsenorthing')

ans =
     0

getm(h,'falseeasting')

ans =
     0

getm(h,'zone')

ans =
     []

getm(h,'maplatlimit')

ans =
   -90    90

getm(h,'maplonlimit')

ans =
  -180   180

getm(h,'Flatlimit')

ans =
   -Inf    90

getm(h,'Flonlimit')
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ans =
  -180   180

The stereographic projection, being azimuthal, does not have standard parallels, so none are
indicated. The map limits do not change from the previous projection. The map figure is shown
below.
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Visualize Spatial Error Using Tissot Indicatrices
A standard method of visualizing the distortions introduced by the map projection is to display small
circles at regular intervals across the globe. After projection, the small circles appear as ellipses of
various sizes, elongations, and orientations. The sizes and shapes of the ellipses reflect the projection
distortions. Conformal projections have circular ellipses, while equal-area projections have ellipses of
the same area. This method was invented by Nicolas Tissot in the 19th century, and the ellipses are
called Tissot indicatrices in his honor. The measure is a tensor function of location that varies from
place to place, and reflects the fact that, unless a map is conformal, map scale is different in every
direction at a location.

Visualize Projection Distortions Using Tissot Indicatrices

This example shows how to add Tissot indicatrices to a map display.

Set up a Sinusoidal projection in a skewed aspect, plotting the graticule.

figure
axesm sinusoid
gridm on
framem on
setm(gca,'Origin',[20 30 45])

Load the coast data set and plot it as green patches.
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load coastlines
patchm(coastlat,coastlon,'g')

Plot the default Tissot diagram. Notice that the circles vary considerably in shape. This indicates that
the Sinusoidal projection is not conformal. Despite the distortions, however the circles all cover equal
amounts of area on the map because the projection has the equal-area property. Default Tissot
diagrams are drawn with blue unfilled 100-point circles spaced 30 degrees apart in both directions.
The default circle radius is 1/10 of the current radius of the reference ellipsoid (by default that radius
is 1).

tissot
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Clear the Tissot diagram, rotate the projection to a polar aspect, and plot a new Tissot diagram using
circles paced 20 degrees apart, half as big as before, drawn with 20 points, and drawn in red. In the
result, note that the circles are drawn faster because fewer points are computed for each one. Also
note that the distortions are still smallest close to the map origin, and still greatest near the map
frame.

clmo tissot
setm(gca,'Origin',[90 0 45])
tissot([20 20 .05 20],'Color','r')
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See Also
distortcalc | mdistort | tissot

More About
• “Quantitative Properties of Map Projections” on page 8-4
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Quantify Map Distortions at Point Locations
The tissot and mdistort functions provide synoptic visual overviews of different forms of map
projection error. Sometimes, however, you need numerical estimates of error at specific locations in
order to quantify or correct for map distortions. This is useful, for example, if you are sampling
environmental data on a uniform basis across a map, and want to know precisely how much area is
associated with each sample point, a statistic that will vary by location and be projection dependent.
Once you have this information, you can adjust environmental density and other statistics you collect
for areal variations induced by the map projection.

A Mapping Toolbox function returns location-specific map error statistics from the current projection
or an mstruct. The distortcalc function computes the same distortion statistics as mdistort
does, but for specified locations provided as arguments. You provide the latitude-longitude locations
one at a time or in vectors. The general form is

[areascale,angdef,maxscale,minscale,merscale,parscale] = ...
    distortcalc(mstruct,lat,long)

However, if you are evaluating the current map figure, omit the mstruct. You need not specify any
return values following the last one of interest to you.

Use distortcalc to Determine Map Projection Geometric Distortions
The following exercise uses distortcalc to compute the maximum area distortion for a map of
Argentina from the land areas data set.

1 Read the North and South America polygon:

Americas = shaperead('landareas.shp','UseGeoCoords',true, ...
    'Selector', {@(name) ...
    strcmpi(name,{'north and south america'}),'Name'});

2 Set the spatial extent (map limits) to contain the southern part of South America and also include
an area closer to the South Pole:

mlatlim = [-72.0 -20.0];
mlonlim = [-75.0 -50.0];
[alat, alon] = maptriml([Americas.Lat], ...
    [Americas.Lon], mlatlim, mlonlim);

3 Create a Mercator cylindrical conformal projection using these limits, specify a five-degree
graticule, and then plot the outline for reference:

figure;
axesm('MapProjection','mercator','grid','on', ...
    'MapLatLimit',mlatlim,'MapLonLimit',mlonlim,...
    'MLineLocation',5, 'PLineLocation',5)
plotm(alat,alon,'b')

The map looks like this:
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4 Sample every tenth point of the patch outline for analysis:

alats = alat(1:10:numel(alat));
alons = alon(1:10:numel(alat));

5 Compute the area distortions (the first value returned by distortcalc) at the sample points:

adistort = distortcalc(alats, alons);
6 Find the range of area distortion across Argentina (percent of a unit area on, in this case, the

equator):

adistortmm = [min(adistort) max(adistort)]

adistortmm =
    1.1790    2.7716

As Argentina occupies mid southern latitudes, its area on a Mercator map is overstated, and the
errors vary noticeably from north to south.

7 Remove any NaNs from the coordinate arrays and plot symbols to represent the relative
distortions as proportional circles, using scatterm:

nanIndex = isnan(adistort);
alats(nanIndex) = [];
alons(nanIndex) = [];
adistort(nanIndex)  = [];
scatterm(alats,alons,20*adistort,'red','filled')

The resulting map is shown below:
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8 The degree of area overstatement would be considerably larger if it extended farther toward the
pole. To see how much larger, get the area distortion for 50°S, 60°S, and 70°S:

a=distortcalc(-50,-60)

a =
       2.4203

a=distortcalc(-60,-60)

a =
            4

>> a=distortcalc(-70,-60)

a =
       8.5485

Note You can only use distortcalc to query locations that are within the current map frame
or mstruct limits. Outside points yield NaN as a result.

9 Using this technique, you can write a simple script that lets you query a map repeatedly to
determine distortion at any desired location. You can select locations with the graphic cursor
using inputm. For example,

[plat plon] = inputm(1)

plat =
      -62.225
plon =
      -72.301
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>> a=distortcalc(plat,plon)

a =
       4.6048

Naturally the answer you get will vary depending on what point you pick. Using this technique,
you can write a simple script that lets you query a map repeatedly to determine any distortion
statistic at any desired location.

Try changing the map projection or even the orientation vector to see how the choice of projection
affects map distortion. For further information, see the reference page for distortcalc.
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Rotational Transformations on the Globe
In “The Orientation Vector” on page 8-9, you explored the concept of altering the aspect of a map
projection in terms of pushing the North Pole to new locations. Another way to think about this is to
redefine the coordinate system, and then to compute a normal aspect projection based on the new
system. For example, you might redefine a spherical coordinate system so that your home town
occupies the origin. If you calculated a map projection in a normal aspect with respect to this
transformed coordinate system, the resulting display would look like an oblique aspect of the true
coordinate system of latitudes and longitudes.

This transformation of coordinate systems can be useful independent of map displays. If you
transform the coordinate system so that your home town is the new North Pole, then the transformed
coordinates of all other points will provide interesting information.

Note The types of coordinate transformations described here are appropriate for the spherical case
only. Attempts to perform them on an ellipsoid will produce incorrect answers on the order of several
to tens of meters.

When you place your home town at a pole, the spherical distance of each point from your hometown
becomes 90° minus its transformed latitude (also known as a colatitude). The point antipodal to your
town would become the South Pole, at -90°. Its distance from your hometown is 90°-(-90°), or 180°, as
expected. Points 90° distant from your hometown all have a transformed latitude of 0°, and thus make
up the transformed equator. Transformed longitudes correspond to their respective great circle
azimuths from your home town.

Reorient Vector Data with rotatem
The rotatem function uses an orientation vector to transform latitudes and longitudes into a new
coordinate system. The orientation vector can be produced by the newpole or putpole functions, or
can be specified manually.

As an example of transforming a coordinate system, suppose you live in Midland, Texas, at
(32°N,102°W). You have a brother in Tulsa (36.2°N,96°W) and a sister in New Orleans (30°N,90°W).

1 Define the three locations:

midl_lat = 32;   midl_lon = -102;
tuls_lat = 36.2; tuls_lon = -96;
newo_lat = 30;   newo_lon = -90;

2 Use the distance function to determine great circle distances and azimuths of Tulsa and New
Orleans from Midland:

[dist2tuls az2tuls] = distance(midl_lat,midl_lon,...
                               tuls_lat,tuls_lon)

dist2tuls =
   6.5032

az2tuls =
  48.1386

[dist2neworl az2neworl] = distance(midl_lat,midl_lon,...
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                                   newo_lat,newo_lon)

dist2neworl =
  10.4727

az2neworl =
  97.8644

Tulsa is about 6.5 degrees distant, New Orleans about 10.5 degrees distant.
3 Compute the absolute difference in azimuth, a fact you will use later.

azdif = abs(az2tuls-az2neworl)

azdif =
   49.7258

4 Today, you feel on top of the world, so make Midland, Texas, the north pole of a transformed
coordinate system. To do this, first determine the origin required to put Midland at the pole using
newpole:

origin = newpole(midl_lat,midl_lon)

origin =
    58    78     0

The origin of the new coordinate system is (58°N, 78°E). Midland is now at a new latitude of 90°.
5 Determine the transformed coordinates of Tulsa and New Orleans using the rotatem command.

Because its units default to radians, be sure to include the degrees keyword:

[tuls_lat1,tuls_lon1] = rotatem(tuls_lat,tuls_lon,...
                                origin,'forward','degrees')

tuls_lat1 =
    83.4968
tuls_lon1 =
    -48.1386

[newo_lat1,newo_lon1] = rotatem(newo_lat,newo_lon,...
                                origin,'forward','degrees')

newo_lat1 =
    79.5273
newo_lon1 =
    -97.8644

6 Show that the new colatitudes of Tulsa and New Orleans equal their distances from Midland
computed in step 2 above:

tuls_colat1 = 90-tuls_lat1

tuls_colat1 =
    6.5032

newo_colat1 = 90-newo_lat1

newo_colat1 =
   10.4727
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7 Recall from step 4 that the absolute difference in the azimuths of the two cities from Midland was
49.7258°. Verify that this equals the difference in their new longitudes:

tuls_lon1-newo_lon1

ans =
   49.7258

You might note small numerical differences in the results (on the order of 10-6), due to round-off
error and trigonometric functions.

For further information, see the reference pages for rotatem, newpole, putpole, neworig, and
org2pol.

Reorient Gridded Data

This example shows how to transform a regular data grid into a new one with its data rearranged to
correspond to a new coordinate system using the neworig function. You can transform coordinate
systems of data grids as well as vector data. When regular data grids are manipulated in this manner,
distance and azimuth calculations with the map variable become row and column operations.

Load elevation raster data and a geographic cells reference object. Transform the data set to a new
coordinate system in which a point in Sri Lanka is the north pole. Reorient the data grid by using the
neworig function. Note that the result, [Z,lat,lon], is a geolocated data grid, not a regular data
grid like the original data.

load topo60c
origin = newpole(7,80);
[Z,lat,lon] = neworig(topo60c,topo60cR,origin);

Display the new map, in normal aspect, as its orientation vector shows. Note that every cell in the
first row of the new grid is 0 to 1 degrees distant from the point new origin. Every cell in its second
row is 1 to 2 degrees distant, and so on. In addition, every cell in a particular column has the same
great circle azimuth from the new origin.

axesm miller
lat = linspace(-90,90,90);
lon = linspace(-180,180,180);
surfm(lat,lon,Z);
demcmap(topo60c)
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mstruct = getm(gca);
mstruct.origin

ans = 1×3

     0     0     0

 Rotational Transformations on the Globe

8-33



Create a UTM Map
The Universal Transverse Mercator (UTM) system divides the world into a regular, nonoverlapping
grid of quadrangles called zones. Each zone is 8-by-6 degrees in extent and uses a transverse
Mercator projection that is designed to limit distortion. UTM zones are identified using a grid
reference in the form of a number followed by a letter, for example 31T. Each UTM zone has a false
northing and a false easting. These are offsets that enable each zone to have positive coordinates in
both directions. All UTM zones have a false easting of 500,000 meters. All zones in the northern
hemisphere have a false northing of 0 meters, and all zones in the southern hemisphere have a false
northing of 10,000,000 meters.

The UTM system is defined between 80 degrees south and 84 degrees north. Beyond these limits, use
the Universal Polar Stereographic (UPS) system instead. The UPS system has two zones, north and
south. Both UPS zones have a false northing and false easting of 2,000,000 m.

Create a UTM Map

You can create UTM maps with the axesm function. However, unlike other projections, the map frame
is limited to an 8-by-6 degree map window (the UTM zone).

Create a UTM axesm-based map.

axesm utm
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Get the properties of the axesm-based map and inspect them in the Command Window or with the
Variables editor. Note that the default zone is 31N. This is selected because the map origin defaults to
[0 3 0] , which is on the equator and at a longitude of 3° E. This is the center longitude of zone
31N, which has a latitude limit of [0 8], and a longitude limit of [0 6].

h = getm(gca);
h.zone

ans = 
'31N'

Change the zone to 32N, one zone to the east of the default, and inspect the other parameters again.
Note that the map origin and limits are adjusted for zone 32N.

setm(gca,'zone','32n')

h = getm(gca);

Draw the map grid and label it.

setm(gca,'grid','on','meridianlabel','on','parallellabel','on')
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Load and plot the coastline data set to see a close-up of the Gulf of Guinea and Bioko Island in UTM.

load coastlines
plotm(coastlat,coastlon)
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See Also
utm | ups
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Set UTM Parameters Interactively
The easiest way to use the UTM projection is through a graphical user interface. You can create or
modify a UTM area of interest with the axesmui projection control panel, and get further assistance
form the utmzoneui control panel.

1 You can Shift+click in the window of an axesm-based map, or type axesmui to display the
projection control panel. Here you start from scratch:

figure
axesm utm
axesmui

The Map Projection field is set to cyln: Universal Transverse Mercator (UTM).

Note For UTM and UPS maps, the Aspect field is set to normal and cannot be changed. If you
attempt to specify transverse, an error results.

2 Click the Zone button to open the utmzoneui panel. Click the map near your area of interest to
pick the zone:

Note that while you can open the utmzoneui control panel from the command line, you then
have to manually update the figure with the zone name it returns with a setm command:

setm(gca,'zone',ans)
3 Click the Accept button.

The utmzoneui panel closes, and the zone field is set to the one you picked. The map limits are
updated accordingly, and the geoid parameters are automatically set to an appropriate ellipsoid
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definition for that zone. You can override the default choice by selecting another ellipsoid from
the list or by typing the parameters in the Geoid field.

4 Click Apply to close the projection control panel.

The projection is then ready for projection calculations or map display commands.
5 Now view a choropleth base map from the usstatehi shapefile for the area within the zone that

you just selected:

states = shaperead('usastatehi.shp', 'UseGeoCoords', true);
framem
faceColors = makesymbolspec('Polygon',...
    {'INDEX', [1 numel(states)],...
     'FaceColor', polcmap(numel(states))});
geoshow(states,'DisplayType', 'polygon',...
    'SymbolSpec', faceColors)
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What you see depends on the zone you selected. The preceding display is for zone 18T, which
contains portions of New England and the Middle Atlantic states.

You can also calculate projected UTM grid coordinates from latitudes and longitudes:

[latlim, lonlim] = utmzone('15S')

latlim =

    32    40

lonlim =

   -96   -90

mstruct = gcm;
[x,y] = projfwd(mstruct, latlim, lonlim)

x =

   1.0e+06 *

   -1.5029   -0.7829

y =

   1.0e+06 *

    3.7403    4.5369
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Work in UTM Without a Displayed Map

You can set up UTM to calculate coordinates without generating a map display, using the defaultm
function. The utmzone and utmgeoid functions help you select a zone and an appropriate ellipsoid.
In this example, you generate UTM coordinate data for a location in New York City, using that point to
define the projection itself.

Define a location in New York City. Obtain the UTM zone for this point.

lat = 40.7;
lon = -74.0;
z = utmzone(lat,lon)

z = 
'18T'

Get the suggested ellipsoid vector and name for this zone.

[ellipsoid,estr] = utmgeoid(z)

ellipsoid = 1×2
106 ×

    6.3782    0.0000

estr = 
'clarke66'

Set up the UTM coordinate system based on this information.

utmstruct = defaultm('utm');
utmstruct.zone = z;
utmstruct.geoid = ellipsoid;
utmstruct = defaultm(utmstruct);

Transform the coordinates, without a map display.

[x,y] = projfwd(utmstruct,lat,lon)

x = 5.8448e+05

y = 4.5057e+06

Compute the zone limits (latitude and longitude limits) for a specified zone by using the utmzone
function. You can also call utmzone recursively to obtain the limits of the UTM zone within which a
point location falls.

utmzone('18T')

ans = 1×4

    40    48   -78   -72

[zonelats,zonelons] = utmzone(utmzone(40.7,-74.0))
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zonelats = 1×2

    40    48

zonelons = 1×2

   -78   -72

Alternatively, set up a UTM coordinate system using a projcrs object. To create the object, specify
an EPSG code. For information about EPSG codes, see the EPSG registry. Verify that the projcrs
object has the correct name and ellipsoid. Then, transform the coordinates.

p = projcrs(26718);
p.Name

ans = 
"NAD27 / UTM zone 18N"

p.GeographicCRS.Spheroid.Name

ans = 
'Clarke 1866'

[xp,yp] = projfwd(p,lat,lon)

xp = 5.8448e+05

yp = 4.5057e+06

See Also
projcrs | utmgeoid | utmzone | projfwd | defaultm
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Use the Transverse Aspect to Map Across UTM Zones

To display areas that extend across more than one UTM zone, use the Mercator projection in a
transverse aspect. UTM is a zone-based coordinate system and is designed to be used like a map
series, selecting from the appropriate sheet. While it is possible to extend one zone's coordinates into
a neighboring zone's territory, this is not normally done. This example shows a transverse Mercator
projection appropriate to Chile. In the example, note how the projection's line of zero distortion is
aligned with the predominantly north-south axis of the country. Of course, you do not obtain
coordinates in meters that would match those of a UTM projection, but the results will be nearly as
accurate. To place the zero distortion line exactly on the midline of the country, use better estimates
of the orientation vector's central meridian and orientation angle.

Set up an axesm-based map with a transverse aspect and display a map of Chile. Calculate the map
distortion.

figure;
latlim = [-60 -15];
centralMeridian = -70; 
width = 20;
axesm("mercator","Origin",[0 centralMeridian -90], ...
      "Flatlimit",[-width/2 width/2],"Flonlimit",sort(-latlim), ...
      "Aspect","transverse");
land = readgeotable("landareas.shp");
geoshow(land,"FaceColor","none")
framem
gridm
setm(gca,"plinefill",1000)
tightmap
mdistort scale
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You might receive warnings about points from landareas.shp falling outside the valid projection
region. You can ignore such warnings.
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Summary and Guide to Projections
Use projections to display latitude-longitude coordinate data on maps. Choose a projection method by
considering these criteria:

• Family – Choose a cylindrical, conic, or azimuthal projection based on your purpose and region of
interest. For more information, see “The Three Main Families of Map Projections” on page 8-5.

• Properties – Choose a projection based on the properties you want to preserve, such as shape,
distance, direction, scale, and area. For more information, see “Quantitative Properties of Map
Projections” on page 8-4.

• Distortion – Choose a projection based on the distortion you want to minimize or eliminate. For
more information, see “Map Projections and Distortions” on page 8-2.

These tables show the map projections you can use with map projection structures and axesm-based
maps. For more information about map projection structures, see defaultm. For more information
about axesm-based maps, see axesm.

Note Most projection IDs are also functions on the MATLAB search path. These functions are only
used in the implementation of functions such as defaultm and axesm, and therefore their syntaxes
are not documented.

Cylindrical Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Balthasart balthsrt ✔ x x —

Behrmann behrmann ✔ x x —

Bolshoi Sovietskii Atlas
Mira

bsam x x x —
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Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Braun Perspective braun x x x —

Cassini cassini x x ✔ —

Cassini – Standard cassinistd x x x —

Central ccylin x x x —

Equal-Area Cylindrical eqacylin ✔ x x —

Equidistant Cylindrical eqdcylin x x ✔ —
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Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Gall Isographic giso x x ✔ —

Gall Orthographic gortho ✔ x x —

Gall Stereographic gstereo x x x —

Lambert Equal-Area
Cylindrical

lambcyln ✔ x x —

Mercator mercator x ✔ x Rhumb lines
are straight.

Miller miller x x x —
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Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Plate Carrée pcarree x x ✔ —

Transverse Mercator tranmerc x ✔ x —

Trystan Edwards trystan ✔ x x —

Universal Transverse
Mercator (UTM)

utm x ✔ x — —

Wetch wetch x x x —

Pseudocylindrical Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Apianus II apianus x x x —
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Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Collignon collig ✔ x x —

Craster Parabolic craster ✔ x x —

Eckert I eckert1 x x x —

Eckert II eckert2 ✔ x x —

Eckert III eckert3 x x x —

Eckert IV eckert4 ✔ x x —

Eckert V eckert5 x x x —

Eckert VI eckert6 ✔ x x —

Fournier fournier ✔ x x —
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Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Goode Homolosine goode ✔ x x —

Hatano Asymmetrical
Equal-Area

hatano ✔ x x —

Kavraisky V kavrsky5 ✔ x x —

Kavraisky VI kavrsky6 ✔ x x —

Loximuthal loximuth x x x Rhumb lines
from the
central point
are straight,
true to scale,
and correct
in azimuth.

McBryde-Thomas Flat-
Polar Parabolic

flatplrp ✔ x x —

McBryde-Thomas Flat-
Polar Quartic

flatplrq ✔ x x —

McBryde-Thomas Flat-
Polar Sinusoidal

flatplrs ✔ x x —
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Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Mollweide mollweid ✔ x x —

Putnins P5 putnins5 x x x —

Quartic Authalic quartic ✔ x x —

Robinson robinson x x x —

Sinusoidal sinusoid ✔ x x —

Tissot Modified Sinusoidal modsine ✔ x x —

Wagner IV wagner4 ✔ x x —

Winkel 1 winkel x x x —
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Conic Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Albers Equal-Area Conic eqaconic ✔ x x —

Albers Equal-Area Conic –
Standard

eqaconicst
d

✔ x x —

Equidistant Conic eqdconic x x ✔ —

Equidistant Conic –
Standard

eqdconicst
d

x x ✔ —

Lambert Conformal Conic lambert x ✔ x —
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Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Lambert Conformal Conic
– Standard

lambertstd x ✔ x —

Murdoch I Conic murdoch1 x x ✔ The total
area is
correct.

Murdoch III Minimum
Error Conic

murdoch3 x x ✔ The total
area is
correct.

Pseudoconic Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Bonne bonne ✔ x x —
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Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Werner werner ✔ x x —

Polyconic Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Polyconic polycon x x x —

Polyconic – Standard polyconstd x x x —

Van Der Grinten I vgrint1 x x x —
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Azimuthal Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Breusing Harmonic Mean breusing x x x —

Equidistant Azimuthal eqdazim x x ✔ —

Gnomonic gnomonic x x x Great circles
appear as
straight
lines.

Lambert Azimuthal Equal-
Area

eqaazim ✔ x x —
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Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Orthographic ortho x x x —

Stereographic stereo x ✔ x Great and
small circles
appear as
either
straight lines
or circular
arcs.

Universal Polar
Stereographic (UPS)

ups x ✔ x Great and
small circles
appear as
either
straight lines
or circular
arcs.

—

Vertical Perspective
Azimuthal

vperspec x x x —
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Pseudoazimuthal Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Wiechel wiechel ✔ x x —

Modified Azimuthal Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Aitoff aitoff x x x —

Briesemeister bries ✔ x x —

Hammer hammer ✔ x x —

See Also
axesm | geoshow | defaultm
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Transform Coordinates to a Different Projected CRS

If you directly compare data sets with different projected coordinate reference systems (CRSs), then
the results are inaccurate. Therefore, before comparing data sets, first verify that the CRSs are the
same. If different projected CRSs have the same underlying geographic CRS, then you can transform
the coordinates from one projected CRS to the other. Once the data sets are referenced to the same
projected CRS, you can compare them.

To transform projected x-y coordinates to a different projected CRS, first unproject the x-y
coordinates to latitude-longitude coordinates by using the projinv function. Then, project the
latitude-longitude coordinates to x-y coordinates in a different projected CRS by using the projfwd
function.

For example, import a shapefile containing the x- and y-coordinates of roads in Boston. Also import
information about the shapefile as a structure. Find the projected CRS for the coordinates by
accessing the CoordinateReferenceSystem field of that structure.

s = shaperead('boston_roads.shp');
x1 = [s.X];
y1 = [s.Y];
info = shapeinfo('boston_roads.shp');
p1 = info.CoordinateReferenceSystem;

Unproject the x-y coordinates and return latitude-longitude coordinates.

[lat,lon] = projinv(p1,x1,y1);

Select a new projected CRS for the target projection. For this example, create a projcrs object for
UTM zone 19N. Verify that both projected CRSs have the same geographic CRS. If the geographic
CRSs are different, then the projected coordinates may be inaccurate. You can find the geographic
CRS by querying the GeographicCRS property of the projcrs object.

p2 = projcrs(26919);
p2.GeographicCRS.Name

ans = 
"NAD83"

p1.GeographicCRS.Name

ans = 
"NAD83"

Project the latitude-longitude coordinates to x-y coordinates by specifying the projcrs object you
created.

[x2,y2] = projfwd(p2,lat,lon);

Compare the original x-y coordinates with the new x-y coordinates by displaying them. Add labels and
a title to each figure.

figure
mapshow(x1,y1)
xlabel('x (meters)')
ylabel('y (meters)')
title(p1.Name)
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figure
mapshow(x2,y2)
xlabel('x (meters)')
ylabel('y (meters)')
title(p2.Name)
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The visualizations are similar, but the coordinates displayed along the axis rulers correspond to
different projected CRSs.

See Also
projinv | projfwd | geocrs | projcrs | shaperead

More About
• “Project and Display Raster Data” on page 8-61
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Project and Display Raster Data
To project or unproject regularly-spaced raster data that is associated with a geographic or map
reference object, you must first create a coordinate grid that matches the size of the raster. Use
different grid creation functions depending on which way you are projecting. When you project
latitude-longitude coordinates to x-y coordinates, create a grid using the geographicGrid function.
When you unproject x-y coordinates to latitude-longitude coordinates, create a grid using the
worldGrid function.

After transforming the raster data, you can display it on a map using visualization functions such as
mapshow and geoshow. Use mapshow for projected x-y coordinates and geoshow for unprojected
latitude-longitude coordinates.

Project Raster Data

To project data that is associated with a geographic raster reference object, first create a grid of
latitude-longitude coordinates for each point in the raster. Then, project the geographic coordinates
to x-y map coordinates.

For example, import elevation raster data as an array and a geographic cells reference object. Get the
latitude-longitude coordinates for each point in the raster by using the geographicGrid function.

[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1');
[lat,lon] = geographicGrid(R);

Now that you have your grid, select a map projection to use when projecting the coordinates. For this
example, create a projcrs object for UTM zone 13 in the northern hemisphere. Then, project the
latitude-longitude coordinates to x-y coordinates.

p = projcrs(32613);
[x,y] = projfwd(p,lat,lon);

Display the projected raster as a surface by calling mapshow and specifying the x-y coordinates and
elevation array. Add axis labels and apply a colormap appropriate for elevation data.

figure
mapshow(x,y,Z,'DisplayType','surface')
xlabel('x (meters)')
ylabel('y (meters)')
demcmap(Z)
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If the geographic CRS of the latitude-longitude coordinates does not match the geographic CRS of the
projected CRS, then the projected coordinates may be inaccurate. You can find the geographic CRS of
a projcrs object or a geographic raster reference object by querying their GeographicCRS
properties.

p.GeographicCRS.Name

ans = 
"WGS 84"

R.GeographicCRS.Name

ans = 
"WGS 84"

The DTED file used in this example is courtesy of the US Geological Survey.

Unproject Raster Data

To unproject data that is associated with a map raster reference object, first create a grid of x-y
coordinates for each point in the raster. Then, unproject the x-y map coordinates to geographic
coordinates.
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For example, import an image of Boston as an array and a map cells reference object. Get information
about the map projection as a projcrs object by querying the ProjectedCRS property of the
reference object.

[Z,R] = readgeoraster('boston.tif');
p = R.ProjectedCRS;

Get the x-y coordinates for each point in the raster by using the worldGrid function.

[x,y] = worldGrid(R);

Unproject the x-y coordinates to latitude-longitude coordinates by using the projinv function and
specifying the projcrs object and coordinate grid.

[lat,lon] = projinv(p,x,y);

Display the unprojected image by calling geoshow and specifying the latitude-longitude coordinates
and image array. By default, geoshow displays coordinates using a Plate Carrée projection. Then, add
axis labels.

figure
geoshow(lat,lon,Z)
xlabel('Longitude (degrees)')
ylabel('Latitude (degrees)')
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See Also
Functions
projinv | projfwd | intrinsicToWorld | meshgrid | worldGrid

Objects
MapCellsReference | GeographicCellsReference
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Creating Web Map Service Maps

• “Basic WMS Terminology” on page 9-2
• “Basic Workflow for Creating WMS Maps” on page 9-3
• “Add Legend to WMS Map” on page 9-6
• “Read WMS Maps Using Different Coordinate Reference Systems” on page 9-11
• “Modify Your Map Request” on page 9-16
• “Overlay Multiple Layers” on page 9-19
• “Animate Data Layers” on page 9-26
• “Display Animation of Radar Images over GOES Backdrop” on page 9-32
• “Read Quantitative Data from WMS Server” on page 9-34
• “Explore Layers on Same Server” on page 9-43
• “Write WMS Layers to KML File” on page 9-46
• “Search for Layers Outside the WMS Database” on page 9-49
• “Create WMS Maps When Internet Access Is Intermittent” on page 9-51
• “Troubleshoot WMS Servers” on page 9-54
• “Introduction to Web Map Display” on page 9-58
• “Basic Workflow for Displaying Web Maps” on page 9-61
• “Display a Web Map” on page 9-62
• “Select a Base Layer Map” on page 9-63
• “Specify a Custom Base Layer” on page 9-65
• “Specify a WMS Layer as a Base Layer” on page 9-67
• “Add an Overlay Layer to the Map” on page 9-69
• “Add Line, Polygon, and Marker Overlay Layers to Web Maps” on page 9-71
• “Remove Overlay Layers on a Web Map” on page 9-77
• “Navigate a Web Map” on page 9-81
• “Close a Web Map” on page 9-83
• “Annotate a Web Map with Measurement Information” on page 9-84
• “Compositing and Animating Web Map Service (WMS) Meteorological Layers” on page 9-88
• “Troubleshoot Common Problems with Web Maps” on page 9-101
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Basic WMS Terminology
• Open Geospatial Consortium, Inc. (OGC) — An organization comprising companies,

government agencies, and universities that defines specifications for providers of geospatial data
and developers of software designed to access that data. The specifications ensure that providers
and clients can talk to each other and thus promote the sharing of geospatial data worldwide. You
can access the Web Map Server Implementation Specification at the OGC website.

• Web Map Service — The OGC® defines a Web Map Service (WMS) as an entity that "produces
maps of spatially referenced data dynamically from geographic information."

• WMS server— A server that follows the guidelines of the OGC to render maps and return them to
clients.

• georeferenced — Tied to a specific location on the Earth.
• raster data — Data represented as a matrix in which each element corresponds to a specific

rectangular or quadrangular geographic area.
• map — The OGC defines a map as "a portrayal of geographic information as a digital image file

suitable for display on a computer screen."
• raster map — Geographically referenced information stored as a regular array of cells.
• layer — A data set containing a specific type of geographic information. Information can include

temperature, elevation, weather, orthoimagery, boundaries, demographics, topography,
transportation, environmental measurements, or various data from satellites.

• capabilities document — An XML document containing metadata describing the geographic
content offered by a server.

See Also

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3
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Basic Workflow for Creating WMS Maps

A Web Map Service (WMS) provides images of publicly accessible geospatial information from web-
based sources. This example shows how to find and display a WMS map of satellite imagery for a
region around Europe.

Search WMS Database

A layer is a data set that contains a specific type of geographic information, such as elevation,
weather, or orthoimagery. Mapping Toolbox™ contains a database, called the WMS Database, that
includes more than 100,000 layers from more than 1000 servers. You can search the WMS Database
by using the wmsfind function. By default, the wmsfind function searches the WMS Database for
matching layer names and layer titles.

For this example, search the WMS Database for layers that mention eox. For more information about
EOX::Maps, see EOX::Maps.

eox = wmsfind("eox");

The wmsfind function returns layers as WMSLayer objects. In this case, the function returned
multiple layers. Note that your results might be different because the WMS Database changes each
release.

Refine Search

Refine your search based on the WMS Database by using the refine function or based on
geographic limits by using the refineLimits function. If your original search provides only one
layer, then you do not need to refine your search.

For this example, refine your search to find layers in the WMS Database that also contain blue marble
imagery from the NASA Earth Observatory.

eox_marble = refine(eox,"blue marble");

In this case, there are multiple layers in the WMS Database from EOX::Maps that contain blue marble
imagery. Refine your search again to find layers with valid latitude limits.

eox_marble_limits = refineLimits(eox_marble,"Latlim",[-90 90]);

The refined search includes one layer.

Synchronize Layer with Server

Get up-to-date information about the layer by synchronizing it with the web server. The wmsupdate
function updates the properties of WMSLayer objects, including the Abstract, CoordRefSysCodes,
and Details properties.

Update the layer.

eox_update = wmsupdate(eox_marble_limits);

Read and Display Map

Read the WMS map from the server by using the wmsread function. You can customize the map by
specifying properties such as the geographic limits, image dimensions, and background color.
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For this example, create an axesm-based map with geographic limits that are appropriate for Europe.
Get the current map projection structure (mstruct), which contains properties of the current map.

figure
worldmap europe
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;

Read the layer as an array and a GeographicCellsReference object, which ties the map to a
specific location on Earth. Specify the latitude and longitude limits as the current map limits.

[A,R] = wmsread(eox_update,"Latlim",latlim,"Lonlim",lonlim);

Display the map. Add a title by specifying the layer title.

geoshow(A,R)
title(eox_update.LayerTitle)
plabel off
mlabel off

See Also
Functions
wmsfind | wmsupdate | wmsread
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Objects
WMSLayer | GeographicCellsReference

More About
• “Basic WMS Terminology” on page 9-2
• “Modify Your Map Request” on page 9-16
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Add Legend to WMS Map

WMS servers render layers as images. About 45% of WMS servers in the WMS Database provide
legends to help you interpret the pixel colors of the images. You can download the legend image for a
layer by accessing the Details.Style.LegendURL field of the WMSLayer object.

This example shows how to read and display a WMS map of surface temperatures, download the
associated legend image, and combine the WMS map and legend into a single image.

Read and Display Map

Search the WMS Database for layers from the NASA Goddard Space Flight SVS Image Server, then
find the layer that contains urban temperature signatures. Synchronize the layer with the server by
using the wmsupdate function. To access the legend image, you must synchronize the layer with the
server.

layers = wmsfind('svs.gsfc.nasa.gov','SearchField','serverurl');
urban_temperature = refine(layers,'urban*temperature');
urban_temperature = wmsupdate(urban_temperature);

Read and display the layer on a map.

[A,R] = wmsread(urban_temperature);
mapFigure = figure;
usamap(A,R)
geoshow(A,R)

Customize the map by adding city markers, state boundaries, meridian and parallel labels, a north
arrow, and a title.

latlim = R.LatitudeLimits;
lonlim = R.LongitudeLimits;

GT = readgeotable('worldcities.shp');
cities = geoclip(GT.Shape,latlim,lonlim);
GT = GT(cities.NumPoints ~= 0,:);

geoshow(GT,'MarkerEdgeColor','w','Color','w')
for k=1:height(GT)
    lat = GT(k,:).Shape.Latitude;
    lon = GT(k,:).Shape.Longitude;
    n = GT(k,:).Name;
    textm(lat,lon,n,'Color','w','FontWeight','bold')
end

geoshow('usastatehi.shp', 'FaceColor', 'none',...
   'EdgeColor','black')

mlabel('FontWeight','bold')
plabel('FontWeight','bold')

northarrow('Facecolor','w','EdgeColor','w',...
    'Latitude',36.249,'Longitude',-71.173)

title('Urban Temperature Signatures')
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Search for Legend

Determine if a legend image is available by accessing the Details.Style.LegendURL field of the
layer.

urban_temperature.Details.Style.LegendURL

ans = struct with fields:
    OnlineResource: 'http://svs.gsfc.nasa.gov/vis/a000000/a003100/a003152/temp_bar.png'
            Format: 'image/png'
            Height: 90
             Width: 320

The fields are not empty, so a legend is available. Download the legend image.

url = urban_temperature.Details.Style.LegendURL.OnlineResource;
legendImage = webread(url);

Create a figure and axes that are the same size as the image. Then, display the image. Note that the
legend is an image of a colorbar, not a Legend object.

sz = size(legendImage);

legendFigure = figure;
pos = legendFigure.Position;
legendFigure.Position = [pos(1) pos(2) sz(2) sz(1)];
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ax = gca;
ax.Units = 'pixels';
ax.Position = [0 0 sz(2) sz(1)];

imshow(legendImage)

Combine Map and Legend

When you display images using the geoshow function, the map projection might cause text to appear
warped. Instead, convert the map into an image and combine the map image with the legend image.

Convert the map into an image by using the getframe and frame2im functions.

mapImage = getframe(mapFigure);

mapImage = frame2im(mapImage);

To combine the images, the width of the images must be equal. In this example, the width of the
legend image is smaller than the width of the map image. Make the widths the same by padding the
legend image.
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p = (size(mapImage,2) - size(legendImage,2))/2;
legendImage = padarray(legendImage,[0 p 0],255,'both');

Combine the images.

combinedImage = [mapImage; legendImage];

Create a figure and axes that are the same size as the combined image. Display the combined image
in the figure.

combinedsz = size(combinedImage);

combinedFigure = figure;
pos = combinedFigure.Position;
combinedFigure.Position = ...
    [pos(1) pos(2) combinedsz(2) combinedsz(1)];

ax = gca;
ax.Units = 'pixels';
ax.Position = [0 0 combinedsz(2) combinedsz(1)];

imshow(combinedImage)
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See Also
Functions
wmsfind | wmsupdate | wmsread

Objects
WMSLayer
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Read WMS Maps Using Different Coordinate Reference
Systems

To read a WMS map in the EPSG:4326 coordinate reference system, use the wmsread function.
EPSG:4326 is based on the 1984 World Geodetic System (WGS84) datum. All servers in the WMS
Database, and presumably all WMS servers in general, use the EPSG:4326 coordinate reference
system. This system is a requirement of the OGC® WMS specification.

To read a WMS map in a different coordinate reference system, create a request URL using
WebMapServer and WMSMapRequest objects and then read the map using the getMap method. For
more information about coordinate reference systems, see Spatial Reference.

This example shows how to read a WMS map with data in Web Mercator coordinates, also known as
WGS 84/Pseudo-Mercator coordinates. The Web Mercator coordinate system is commonly used by
web applications.

Find Web Mercator Coordinates for Region

Import a GeoTIFF image of Boston as an array and a MapCellsReference object. Find the projected
coordinate reference system for the image.

[A,R] = readgeoraster('boston.tif');
p_geotiff = R.ProjectedCRS;

Unproject the x- and y-world limits and then reproject them to use the Web Mercator coordinate
reference system (EPSG:3857).

[latlim,lonlim] = projinv(p_geotiff,R.XWorldLimits,R.YWorldLimits);
p_webmercator = projcrs(3857);
[xlimits,ylimits] = projfwd(p_webmercator,latlim,lonlim);

To obtain imagery in this coordinate reference system, you must use WMSMapRequest and
WebMapServer objects because the wmsread function only reads data in the WGS84 coordinate
reference system (EPSG:4326).

Read and Display Map for Region

The USGS National Map provides orthoimagery and topography maps for various regions of the
United States. The USGS Imagery Only server provides data in both WGS84 coordinates and Web
Mercator coordinates.

Search the WMS Database for the USGS Imagery Only server and select the first layer.

doqLayer = wmsfind('usgsimageryonly','SearchField','serverurl');
doqLayer = wmsupdate(doqLayer);

Create WebMapServer and WMSMapRequest objects.

server = WebMapServer(doqLayer.ServerURL);
request = WMSMapRequest(doqLayer,server);

Modify the map request by setting properties of the WMSMapRequest object. For this example,
specify an image height and width for a sample size of 5 meters. Set the map limits to cover the same
region as the GeoTIFF file.
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metersPerSample = 5;
h = round(diff(ylimits)/metersPerSample);
w = round(diff(xlimits)/metersPerSample);

ylimits = [ylimits(1), ylimits(1) + h*metersPerSample];
xlimits = [xlimits(1), xlimits(1) + w*metersPerSample];

request.CoordRefSysCode = 'EPSG:3857';
request.ImageHeight = h;
request.ImageWidth  = w;
request.XLim = xlimits;
request.YLim = ylimits;

Read a map of the orthoimagery in Web Mercator coordinates.

A_webmercator = getMap(server,request.RequestURL);
R_webmercator = request.RasterReference;

Display the orthoimagery on a map.

figure
mapshow(A_webmercator,R_webmercator)
axis tight
title({'USGS Digital Ortho-Quadrangle - Boston','Web Mercator'})

Read Boston place names from a shapefile. Unproject and reproject the place names so that they are
in Web Mercator coordinates. Display the place names on the map.

S = shaperead('boston_placenames.shp');
x_names = [S.X] * unitsratio('sf','meter');
y_names = [S.Y] * unitsratio('sf','meter');
names = {S.NAME};

[lat_placenames,lon_placenames] = projinv(p_geotiff, ...
                                          x_names,y_names);
[x_webmercator,y_webmercator] = projfwd(p_webmercator, ...
                                        lat_placenames,lon_placenames);

text(x_webmercator,y_webmercator,names, ...
    'BackgroundColor',[0.9 0.9 0],'FontSize',6,'Clipping','on')
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Compare the map you read from the server to the GeoTIFF image.

figure
mapshow('boston.tif')
axis tight
title({'boston.tif', p_geotiff.Name})
text(x_names,y_names,names, ...
    'BackgroundColor',[0.9 0.9 0],'FontSize',6,'Clipping','on')
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You can also compare the maps by using geographic axes and a satellite basemap. When you plot on
geographic axes, coordinates are referenced to the WGS84 coordinate reference system.

figure
geolimits(latlim,lonlim)
geobasemap('satellite')
text(lat_placenames,lon_placenames,names, ...
    'BackgroundColor',[0.9 0.9 0],'FontSize',6)
title({'Satellite Basemap','WGS84'})

9 Creating Web Map Service Maps

9-14



See Also
Functions
wmsfind | wmsupdate | wmsread | getMap

Objects
WMSMapRequest | WebMapServer | WMSLayer

Related Examples
• “Modify Your Map Request” on page 9-16
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Modify Your Map Request
In this section...
“Set Map Request Geographic Limits and Time” on page 9-16
“Manually Edit Web Map Request URL” on page 9-17

Set Map Request Geographic Limits and Time

A WMSMapRequest object contains properties to modify the geographic extent and time of the
requested map. This example shows how to modify your map request to map land surface
temperature for the southern tip of Africa. For a complete list of properties, see WMSMapRequest.

Search the WMS Database for layers on the NASA Earth Observations (NEO) WMS server. Refine the
search to include only layers with "land surface temperature" in the layer title or layer name.
Refine the search again to include only the layer with monthly values from the MODIS sensor on the
Terra satellite.

neo = wmsfind("neo*nasa*wms","SearchFields","serverurl");
landTemp = refine(neo,"land surface temperature");
landTemp = refine(landTemp,"night*month*modis");
landTemp = wmsupdate(landTemp);

Create a WebMapServer object from the server URL stored in the ServerURL property of the layer.

server = WebMapServer(landTemp.ServerURL);

Create a WebMapRequest object from the layer and web map server object. Set the latitude and
longitude limits by using the Latlim and Lonlim properties. Set the time request to March 1, 2009
by using the Time property.

mapRequest = WMSMapRequest(landTemp,server);
mapRequest.Latlim = [-45 -25];
mapRequest.Lonlim = [15 35];
mapRequest.Time = "2009-03-01";

Send your request to the server by using the getMap function.

landTempImage = getMap(server,mapRequest.RequestURL);

Display the image on a map.

figure
worldmap(mapRequest.Latlim,mapRequest.Lonlim);
setm(gca,"mlabelparallel",-45)
geoshow(landTempImage,mapRequest.RasterReference);
title(["South Africa" landTemp.LayerTitle], ...
    "FontWeight","bold","Interpreter","none")
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Read abstract information for the layer from the MetadataURL field.

readerFcn = @(filename)readstruct(filename,"FileType","xml");
options = weboptions("ContentReader",readerFcn,"Timeout",10);
xml = webread(landTemp.Details.MetadataURL,options);
abstract = xml.idinfo.descript.abstract;

Manually Edit Web Map Request URL

You can modify a map request URL manually.

Search the WMS Database for a layer containing terrain elevation data from the WMS server hosted
by MathWorks®. Get the map request URL for the layer.

layers = wmsfind("mathworks","SearchField","serverurl");
layer = refine(layers,"elevation");
mapRequest = WMSMapRequest(layer);

Set the map request URL to a variable.

mapURL = mapRequest.RequestURL;

Specify a background color and request data for the southern hemisphere by manually editing the
map request URL. To do this, copy and paste the contents of mapURL into a new variable. Then,
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change the background color section of the URL to &BGCOLOR=0x2DC1D2 and change the bounding
box section of the URL to &BBOX=-90.0,-180,0,180.0.

modifiedURL = ['https://wms.mathworks.com?SERVICE=WMS' ...
                '&LAYERS=terrain&CRS=EPSG:4326&FORMAT=image/png' ...
                '&TRANSPARENT=FALSE&HEIGHT=256&BGCOLOR=0x2DC1D2' ...
                '&REQUEST=GetMap&WIDTH=512&BBOX=-90.0,-180,0,180.0' ...
                '&STYLES=&VERSION=1.3.0'];

Read and display the modified map.

[A,R] = wmsread(modifiedURL);
figure
axesm globe
axis off
geoshow(A,R)
title("Terrain Data for the Southern Hemisphere")

See Also
wmsfind | wmsupdate | wmsread

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3
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Overlay Multiple Layers
In this section...
“Create Composite Map of Multiple Layers from One Server” on page 9-19
“Combine Layers from One Server with Data from Other Sources” on page 9-20
“Drape Orthoimagery Over DEM” on page 9-22

Create Composite Map of Multiple Layers from One Server

The WMS specification allows the server to merge multiple layers into a single raster map. The
Metacarta VMAP0 server contains many data layers, such as coastlines, national boundaries, ocean,
and ground. Read and display a composite of multiple layers from the VMAP0 server. The rendered
map has a spatial resolution of 0.5 degrees per cell.

Search the WMS Database for the VMAP0 layers. Synchronize the layers you found with the server.

vmap0 = wmsfind('vmap0.tiles','SearchField','serverurl');
vmap0 = wmsupdate(vmap0);

Create an array of multiple layers that include ground and ocean, coastlines, and national boundaries.

layers = [refine(vmap0,'coastline_01'); ...
          refine(vmap0,'country_01'); ...
          refine(vmap0,'ground_01'); ...
          refine(vmap0,'inwater'); ...
          refine(vmap0,'ocean')];

Retrieve the composite map. Request a cell size of 0.5 degrees by setting the image height and image
width parameters. Set Transparent to true so that all pixels not representing features or data
values in a layer are set to a transparent value in the resulting image, making it possible to produce a
composite map.

[overlayImage,R] = wmsread(layers,'Transparent',true, ...
                            'ImageHeight',360,'ImageWidth',720);

Display the composite map.

figure
worldmap('world')
geoshow(overlayImage,R);
title('Composite of VMAP0 Layers')
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The data used in this example is from Metacarta.

Combine Layers from One Server with Data from Other Sources

This example shows how to merge a boundaries raster map with vector data.

Specify a global raster with 0.5-degree cells by using the georefcells function. Specify columns
running north-to-south, for consistency with wmsread. The result R is a geographic raster reference
object.

latlim = [-90 90];
lonlim = [-180 180];
cellExtent = 0.5;
R = georefcells(latlim,lonlim,  ...
    cellExtent,cellExtent,'ColumnsStartFrom','north');

Read a shapefile that contains global land area polygons and convert it to a raster map.

land = shaperead('landareas.shp','UseGeoCoords',true);
lat = [land.Lat];
lon = [land.Lon];
land = vec2mtx(lat,lon,zeros(R.RasterSize),R,'filled');

Read a shapefile that contains world river polylines and convert it to a raster map.
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riverLines = shaperead('worldrivers.shp','UseGeoCoords',true);
rivers = vec2mtx([riverLines.Lat],[riverLines.Lon],land,R);

Merge the rivers with the land.

merged = land;
merged(rivers == 1) = 3;

Get coordinate reference system information from the land areas shapefile by using the shapeinfo
function. The world rivers shapefile uses the same coordinate reference system. Set the
GeographicCRS property of the reference object.

info = shapeinfo('landareas.shp');
R.GeographicCRS = info.CoordinateReferenceSystem;

Read the boundaries image from the VMAP0 server.

vmap0 = wmsfind('vmap0.tiles','SearchField','serverurl');
vmap0 = wmsupdate(vmap0);
layer = refine(vmap0,'country_01');
height = R.RasterSize(1);
width  = R.RasterSize(2);
[boundaries,boundariesR] = wmsread(layer,'ImageFormat','image/png', ...
    'ImageHeight',height,'ImageWidth',width);

Confirm that the boundaries and merged rasters are coincident.

isequal(boundariesR,R)

ans = logical
   1

Merge the rivers and land with the boundaries.

index = boundaries(:,:,1) ~= 255 ...
    & boundaries(:,:,2) ~= 255 ...
    & boundaries(:,:,3) ~= 255;
merged(index) = 1;

Display the result.

figure
worldmap(merged,R)
geoshow(merged,R,'DisplayType','texturemap')
colormap([0.45 0.60 0.30; 0 0 0; 0 0.5 1; 0 0 1])
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The data used in this example is from the US National Geospatial-Intelligence Agency (NGA) and
Metacarta.

Drape Orthoimagery Over DEM

Read elevation data and a geographic postings reference for an area around South Boulder Peak in
Colorado. Crop the elevation data to a smaller area using the geocrop function.

[fullZ,fullR] = readgeoraster('n39_w106_3arc_v2.dt1','OutputType','double');

latlim = [39.25 40.0];
lonlim = [-106 -105.5];
[Z,R] = geocrop(fullZ,fullR,latlim,lonlim);

Display the elevation data. To do this, create an axesm-based map for the United States, plot the data
as a surface, and apply an appropriate colormap. View the map in 3-D by adjusting the camera
position and target. Set the vertical exaggeration by using the daspectm function.

figure
usamap(R.LatitudeLimits,R.LongitudeLimits)
geoshow(Z,R,'DisplayType','surface')
demcmap(Z)
title('Elevation');
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cameraPosition = [218100 4367600 183700];
cameraTarget = [0 4754200 2500];
set(gca,'CameraPosition',cameraPosition, ...
        'CameraTarget',cameraTarget)
daspectm('m',3)

Drape an orthoimage over the elevation data. To do this, first get the names of high-resolution
orthoimagery layers from the USGS National Map using the wmsinfo function. In this case, the
orthoimagery layer is the only layer from the server. Use multiple attempts to connect to the server in
case it is busy.

numberOfAttempts = 5;
attempt = 0;
info = [];
serverURL = ...
   'http://basemap.nationalmap.gov/ArcGIS/services/USGSImageryOnly/MapServer/WMSServer?';
while(isempty(info))
    try
        info = wmsinfo(serverURL);
        orthoLayer = info.Layer(1);
    catch e         
        attempt = attempt + 1;
        if attempt > numberOfAttempts
            throw(e);
        else
            fprintf('Attempting to connect to server:\n"%s"\n',serverURL)
        end        
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    end
end

Request a map of the orthoimagery layer using the wmsread function. To display the orthoimagery,
use the geoshow function and set the CData property to the layer.

imageHeight = size(Z,1);
imageWidth  = size(Z,2);

orthoImage = wmsread(orthoLayer,'Latlim',R.LatitudeLimits, ...
    'Lonlim',R.LongitudeLimits,'ImageHeight', imageHeight, ...
    'ImageWidth',  imageWidth);

figure
usamap(R.LatitudeLimits,R.LongitudeLimits)
geoshow(Z,R,'DisplayType','surface','CData',orthoImage);
title('Orthoimage Draped Over Elevation');
set(gca,'CameraPosition',cameraPosition, ...
        'CameraTarget',cameraTarget)
daspectm('m',3)

The DTED file used in this example is from the US Geological Survey.

See Also
wmsfind | wmsupdate | wmsread
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More About
• “Basic Workflow for Creating WMS Maps” on page 9-3
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Animate Data Layers
In this section...
“Create Movie of Terra/MODIS Maps” on page 9-26
“Create Animated GIF of WMS Maps” on page 9-28
“Create Animation of Time-Lapse Radar Observations” on page 9-29

Create Movie of Terra/MODIS Maps

You can create maps of the same geographic region at different times and view them as a movie. For
a period of seven days, read and display a daily composite of visual images from NASA's Moderate
Resolution Imaging Spectroradiometer (MODIS) scenes captured during the month of December
2010.

Search the WMS Database for a MODIS layer from the NASA Earth Observations (NEO) server.

neo = wmsfind("neo*nasa","SearchFields","serverurl");
modis = refine(neo,"true*color*terra*modis"); 
modis = wmsupdate(modis);

Create a WebMapServer object and a WMSMapRequest object.

server = WebMapServer(modis.ServerURL);
mapRequest = WMSMapRequest(modis,server);

The Extent field provides information about how to retrieve individual frames. For this extent, you
can request a single day because the extent is defined by day ('/P1D'). Because this layer updates
periodically, the value of your Extent field might be different.

modis.Details.Dimension.Extent

ans = 
'2006-09-01/2006-09-14/P1D,2006-09-17/2006-10-10/P1D,2006-10-12/2006-11-18/P1D,2006-11-21/2007-08-16/P1D,2007-08-18,2007-08-20/2007-09-11/P1D,2007-09-15/2007-12-30/P1D,2008-01-01/2008-06-12/P1D,2008-06-14,2008-06-16/2008-07-12/P1D,2008-07-14/2008-09-17/P1D,2008-09-19,2008-09-22/2008-10-17/P1D,2008-10-19/2008-10-22/P1D,2008-10-28/2008-12-02/P1D,2008-12-04/2008-12-20/P1D,2008-12-23/2008-12-30/P1D,2009-01-01/2009-01-20/P1D,2009-01-22/2009-04-19/P1D,2009-04-23/2009-07-05/P1D,2009-07-08/2009-12-30/P1D,2010-01-01/2010-07-16/P1D,2010-07-18/2010-12-07/P1D,2010-12-09/2010-12-30/P1D,2011-01-01/2011-01-25/P1D,2011-01-27/2011-03-19/P1D,2011-03-21/2011-07-23/P1D,2011-07-27/2011-08-27/P1D,2011-08-30/2011-12-13/P1D,2011-12-15/2012-02-19/P1D,2012-02-21/2013-12-01/P1D,2013-12-04/2018-03-12/P1D,2018-03-14/2018-05-16/P1D,2018-05-18/2018-09-17/P1D,2018-09-19/2022-05-04/P1D,2022-05-06/2022-12-21/P1D,2022-12-23/2023-01-04/P1D'

Create an array indicating the first seven days. Set the start time to December 10, 2022 and use a
serial date number.

days = 1:7;
time = "2022-12-10";
startTime = datenum(time);

Open a figure window with axes appropriate for the region specified by the MODIS layer.

hFig = figure;
worldmap(mapRequest.Latlim,mapRequest.Lonlim);

Save each frame to a video file.

videoFilename = "modis_dec.avi";
writer = VideoWriter(videoFilename);
writer.FrameRate = 1;
writer.Quality = 100;
writer.open;
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Set the Visible property of the figure to 'off' to hide the figure while populating the frames. For
each day, read a map of the MODIS layer. Set the Time property to the day number. Ignore data not
found on the server or errors issued by the server by using a try/catch statement. For correct
indexing, set the start time to one day less.

hFig.Visible = "off";
startTime = startTime - 1;
for k = days
    try
        mapRequest.Time = startTime + k;
        timeStr = datestr(mapRequest.Time);
        dailyImage = getMap(server,mapRequest.RequestURL);
        geoshow(dailyImage,mapRequest.RasterReference);
        title({mapRequest.Layer.LayerTitle,timeStr}, ...
            "Interpreter","none","FontWeight","bold")
        frame = getframe(hFig);
        writer.writeVideo(frame);
    catch e
        fprintf(['Server error: %s.\n', ...
            'Ignoring frame number %d on day %s.\n'], ...
            e.message,k,timeStr)
    end
end
writer.close

Read in all video frames.

v = VideoReader(videoFilename);
vidFrames = read(v);
numFrames = get(v,"NumFrames");

Create a movie structure from the video frames.

frames = struct("cdata",[],"colormap",[]);
frames(numFrames) = frames(1);
for k = 1 : numFrames
    frames(k).cdata = vidFrames(:,:,:,k);
    frames(k).colormap = [];
end

Set the Visible property of the figure to 'on' and play the movie once at the frame rate of the
video.

hFig.Visible = "on";
movie(hFig,frames,1,v.FrameRate)
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Create Animated GIF of WMS Maps

Read and display an animation of the Larsen Ice Shelf experiencing a dramatic collapse between
January 31, 2002 and March 7, 2002.

Search the WMS Database for the phrase 'Larsen Ice Shelf'.

iceLayer = wmsfind('Larsen Ice Shelf');

Create a WebMapServer by specifying the server URL of the first layer. Synchronize the layer with
the server by using the updateLayers function.

server = WebMapServer(iceLayer(1).ServerURL);
iceLayer = updateLayers(server,iceLayer(1));

Create a WMSMapRequest object.

request = WMSMapRequest(iceLayer(1),server);

The Extent field provides the available values for a dimension, in this case time. Set the value of the
extent to a variable. Calculate the number of required frames.

extent = string(iceLayer.Details.Dimension.Extent);
extent = split(extent,",");
numFrames = numel(extent);
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Create a figure and set up a map with appropriate geographic limits. Customize the appearance of
the parallels and meridians.

f = figure;
worldmap(request.Latlim,request.Lonlim)
setm(gca,'MLineLocation',1,'MLabelLocation',1, ...
   'MLabelParallel',-67.5,'LabelRotation','off');

Initialize the value of animated to 0.

animated(1,1,1,numFrames) = 0;

Set the Visible property of the figure to 'off' to hide the map while populating the frames. Read
the image of the Larsen Ice Shelf on different days.

f.Visible = 'off';
for k=1:numFrames
   request.Time = extent(k);
   iceImage = getMap(server,request.RequestURL);
   geoshow(iceImage,request.RasterReference)
   title(request.Time,'Interpreter','none')
   frame = getframe(f);
   if k == 1
      [animated, cmap] = rgb2ind(frame.cdata,256,'nodither');
   else
      animated(:,:,1,k) = rgb2ind(frame.cdata,cmap,'nodither');
   end
   pause(2)
end

Save the frames as an animated GIF and view the GIF in a browser.

filename = 'wmsanimated.gif';
imwrite(animated,cmap,filename,'DelayTime',1.5, ...
   'LoopCount',inf);
web(filename) 

Create Animation of Time-Lapse Radar Observations

Display Next-Generation Radar (NEXRAD) images for the United States using data from the Iowa
Environmental Mesonet (IEM) web map server. The server stores layers covering the past 50 minutes
up to the present time in increments of 5 minutes. Read and display the merged layers.

Find layers in the WMS Database that include 'mesonet' and 'nexrad' in their ServerURL fields.

mesonet = wmsfind('mesonet*nexrad','SearchField','serverurl');

NEXRAD Base Reflect Current ('nexrad-n0r') measures the intensity of precipitation. Refine your
search to include only layers with this phrase in one of the search fields.

nexrad = refine(mesonet,'nexrad-n0r','SearchField','any');

Remove the 900913 layers because they are intended for Google Maps™ overlay. Remove the WMST
layer because it contains data for different times.
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layers_900913 = refine(nexrad,'900913','SearchField', ...
   'layername'); 
layer_wmst = refine(nexrad,'wmst', 'SearchField', 'layername'); 
rmLayerNames = {layers_900913.LayerName layer_wmst.LayerName}; 
index = ismember({nexrad.LayerName}, rmLayerNames); 
nexrad = nexrad(~index); 

Update the nexrad layer to fill in all fields and obtain the most recent data.

nexrad = wmsupdate(nexrad,'AllowMultipleServers',true); 

Create a map of the conterminous United States. Get the latitude and longitude limits of the map.

figure
usamap('conus')
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;

Read and display the merged layers.

[A,R] = wmsread(nexrad,'Latlim',latlim,'Lonlim',lonlim);
geoshow(A,R)
geoshow('usastatehi.shp','FaceColor','none')
title({'NEXRAD Radar Map', 'Merged Layers'})

Loop through the sequence of time-lapse radar observations. Set the Visible property of the figure
to 'off' to hide the figure while populating the frames.
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hfig = figure('Visible','off');
usamap('conus')
hstates = geoshow('usastatehi.shp','FaceColor','none');
numFrames = numel(nexrad);
frames = struct('cdata',[],'colormap',[]);
frames(numFrames) = frames;
hmap = [];
frameIndex = 0;
for k = numFrames:-1:1
   frameIndex = frameIndex + 1;
   delete(hmap)
   [A, R] = wmsread(nexrad(k),'Latlim',latlim,'Lonlim',lonlim);
   hmap = geoshow(A,R);
   uistack(hstates,'top')
   title(nexrad(k).LayerName)
   frames(frameIndex) = getframe(hfig);
end

Create an array to write out as an animated GIF.

animated(1,1,1,numFrames) = 0;
for k=1:numFrames
   if k == 1
      [animated,cmap] = rgb2ind(frames(k).cdata,256,'nodither');
   else
      animated(:,:,1,k) = ...
         rgb2ind(frames(k).cdata,cmap,'nodither');
   end     
end

Save the animated GIF and view it in a browser.

filename = 'wmsnexrad.gif';
imwrite(animated,cmap,filename,'DelayTime',1.5, ...
   'LoopCount',inf);
web(filename)

See Also
wmsfind | wmsupdate | wmsread

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3
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Display Animation of Radar Images over GOES Backdrop

This example shows how to display NEXRAD radar images. The images cover the past 24 hours,
sampled at one-hour intervals, for the United States using data from the IEM WMS server.

Search the WMS Database for the 'nexrad-n0r-wmst' layer. Synchronize the layer with the server.

wmst = wmsfind('nexrad-n0r-wmst','SearchField','layername'); 
wmst = wmsupdate(wmst); 

Search the WMS Database for a generated CONUS composite of GOES IR imagery. Synchronize the
layer with the server.

goes = wmsfind('goes*conus*ir','SearchField','layername');
goes = wmsupdate(goes);

Create a map of the conterminous United States.

hfig = figure;
region = 'conus';
usamap(region)
borders = geoshow('usastatehi.shp','FaceColor','none');

Get the latitude and longitude limits of the map.

mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;

Read the GOES layer to use as a backdrop image.

cellsize = 0.1;
[backdrop, R] = wmsread(goes,'ImageFormat','image/png', ...
   'Latlim',latlim,'Lonlim',lonlim,'Cellsize',cellsize);

Find the current time minus 24 hours. Set up frames to hold the data from getframe.

now_m24 = datestr(now-1);
hour_m24 = [now_m24(1:end-5) '00:00'];
hour = datenum(hour_m24);
hmap = [];
numFrames = 24;
frames = struct('cdata',[],'colormap',[]);
frames(numFrames) = frames;

Set the Visible property of the figure to 'off' to hide the figure while populating the frames. For
each hour, obtain the hourly NEXRAD map data and combine it with a copy of the backdrop. Because
of how this Web server handles PNG format, the resulting map data has an image with class double.
Thus, you must convert it to uint8 before merging.

hfig.Visible = 'off';
for k=1:numFrames
    time = datestr(hour);
    [A,R] = wmsread(wmst,'Latlim',latlim,'Lonlim',lonlim, ...
        'Time',time,'CellSize',cellsize, ...
        'BackgroundColor',[0 0 0],'ImageFormat','image/png');
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    delete(hmap)
    index = any(A > 0, 3);
    combination = backdrop;
    index = cat(3,index,index,index);
    combination(index) = uint8(255*A(index));
    hmap = geoshow(combination,R);
    uistack(borders,'top')
    title({wmst.LayerName,time})
    frames(k) = getframe(hfig);
    hour = hour + 1/24;
end

Set the Visible property of the figure to 'on'. View the movie loop three times at 1.5 frames per
second.

hfig.Visible = 'on';
shg
movie(hfig,frames,3,1.5)

See Also
wmsfind | wmsupdate | wmsread

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3
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Read Quantitative Data from WMS Server
WMS servers typically provide layers as images instead of as quantitative data. In some rare cases,
you can get quantitative data from specific WMS servers by requesting data in the GeoTIFF or BIL
format.

You can determine the formats that a server supports by querying the ImageFormats field of the
structure contained within the Details property of a WMS layer.

layers = wmsfind("mathworks","SearchField","serverurl");
elevation = refine(layers,"elevation");
elevation = wmsupdate(elevation);
elevation.Details.ImageFormats

These examples show how to read terrain elevation data from the WMS server hosted by MathWorks
and then display the data as a surface or a texture-mapped surface.

Read and Display Terrain Elevation Data

Search the WMS Database for a layer containing terrain elevation data from the WMS server hosted
by MathWorks.

layers = wmsfind("mathworks","SearchField","serverurl");
elevation = refine(layers,"elevation");

Read the terrain elevation data from the server for a region surrounding the Gulf of Maine. Specify
the sampling interval as 30 arc-seconds and the image format as BIL.

latlim = [40 46];
lonlim = [-71 -65];
samplingInterval = dms2degrees([0 0 30]);
imageFormat = "image/bil";
[Z,R] = wmsread(elevation,"Latlim",latlim,"Lonlim",lonlim, ...
    "ImageFormat",imageFormat,"CellSize",samplingInterval);

Note that Z is an array containing terrain elevation data rather than an RGB image. Find the
minimum and maximum elevation.

elevationLimits = [min(min(Z)) max(max(Z))]

elevationLimits = 1×2 int16 row vector

     -15    1430

Prepare the data for plotting by converting the data type to double. To make the water areas appear
blue on the plot, set elevations at sea level (Z == 0) to a value below sea level.

Z = double(Z);
Z(Z == 0) = -1;

Display the terrain elevation data on a map and plot contour lines at sea level.

figure
worldmap(Z,R)
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geoshow(Z,R,"DisplayType","texturemap")
contourm(Z,R,[0 0],"Color","k")

Customize the map by adding a title and subtitle, a colormap appropriate for elevation data, and a
labeled color bar.

title("Gulf of Maine")
st = textwrap(string(elevation.LayerTitle),40);
subtitle(st)
demcmap(Z)

c = colorbar;
c.Label.String = "Elevation (meters)";

Merge Elevation Data with Rasterized Vector Data

Read terrain elevation data and rasterized national boundaries for a region. Then, embed the
boundaries into the elevation data and display the result on a map.

Read Terrain Elevation Data

Search the WMS Database for a layer containing terrain elevation data from the WMS server hosted
by MathWorks.
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layers = wmsfind("mathworks","SearchField","serverurl");
elevation = refine(layers,"elevation");

Read the terrain elevation data from the server for a region surrounding Afghanistan. Specify the
sampling interval as 1 minute and the image format as BIL.

latlim = [25 40];
lonlim = [55 80];
samplingInterval = dms2degrees([0 1 0]);
[ZA,R] = wmsread(elevation,"Latlim",latlim,"Lonlim",lonlim, ...
   "CellSize",samplingInterval,"ImageFormat","image/bil");

Note that ZA is an array of elevation data rather than an RGB image. Find the minimum and
maximum elevations.

elevationLimits = [min(min(ZA)) max(max(ZA))]

elevationLimits = 1×2 int16 row vector

     -13    7350

Display Terrain Elevation Data

Prepare the data for plotting by converting the data type to double. To make the water areas appear
blue on the plot, set elevations at sea level (ZA == 0) to a value below sea level.

ZA = double(ZA);
ZA(ZA == 0) = -1;

Display the elevation data as a texture map.

figure
worldmap("Afghanistan")
geoshow(ZA,R,"DisplayType","texturemap")
demcmap(ZA)
title("Afghanistan and Surrounding Region")
subtitle(elevation.LayerTitle)
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Read Rasterized Vector Data

Read national boundaries from the Vector Map Level 0 (VMAP0) WMS server as an RGB image. Dark
values in the image represent the boundaries.

vmap0 = wmsfind("vmap0.tiles","SearchField","serverurl");
boundaries = refine(vmap0,"country_02");
B = wmsread(boundaries,"Latlim",latlim,"Lonlim",lonlim,"CellSize",samplingInterval);

Merge Elevation and Rasterized Vector Data

To embed the boundaries into the elevation data, find the elements of the boundaries image that
contain dark values. Then, replace the corresponding elements of the elevation array with a value
slightly higher than the maximum elevation.

ZB = ZA;
idx = B(:,:,1) < 250;
ZB(idx) = max(ZA(:)) + 1;

Display Merged Data

Display the updated data on a new map.

figure
worldmap("Afghanistan")
geoshow(ZB,R,"DisplayType","texturemap")
title("Afghanistan and Country Boundaries")
subtitle(elevation.LayerTitle)
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Apply a colormap appropriate for elevation data. Use black for the boundaries.

cmap = demcmap(ZB);
cmap(end,:,:) = [0 0 0];
colormap(cmap)

Drape Basemap Imagery onto Elevation Data

Read basemap imagery and terrain elevation data for a region. Then, create a 3-D map display by
draping the basemap imagery over the elevation data.

Read Basemap Imagery

Specify the latitude and longitude limits for a region around the Grand Canyon. Read an image for
the region from the "satellite" basemap as an array and as a map cells reference object in Web
Mercator coordinates.

latlim = [36 36.23];
lonlim = [-113.36 -113.13];
[A,R,attrib] = readBasemapImage("satellite",latlim,lonlim);

Read Terrain Elevation Data

WMS servers typically provide data referenced to the World Geodetic System of 1984 (WGS84). If a
layer provides data referenced to a different coordinate system, then you can specify the coordinate
system by using a web map server object, a WMS map request object, and the getMap function.
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Create a web map server object that communicates with the WMS server provided by MathWorks.
Get the terrain elevation layer from the capabilities document.

serverURL = "https://wms.mathworks.com";
server = WebMapServer(serverURL);
info = getCapabilities(server);
elevation = refine(info.Layer,"elevation");

Verify the server provides data referenced to Web Mercator coordinates. The Web Mercator
coordinate system has the EPSG code 3857.

elevation.CoordRefSysCodes

ans = 2×1 cell
    {'EPSG:3857'}
    {'EPSG:4326'}

Create a map request object for the layer.

• Specify the coordinate system as Web Mercator.
• Specify the image dimensions and world xy-limits so that they match the basemap image.
• Request quantitative elevation data by specifying the image format as BIL.

mapRequest = WMSMapRequest(elevation);
mapRequest.CoordRefSysCode = "EPSG:3857";
mapRequest.ImageHeight = size(A,1);
mapRequest.ImageWidth = size(A,2);
mapRequest.XLim = R.XWorldLimits;
mapRequest.YLim = R.YWorldLimits;
mapRequest.ImageFormat = "image/bil";

Read the elevation data by using the getMap function.

Z = getMap(server,mapRequest.RequestURL);
Z = double(Z);

Display Imagery and Elevation Data

Drape the image over the elevation data.

figure
mapshow(Z,R,"DisplayType","surface","CData",A)
bmapAttrib = "Basemap from " + attrib;
wmsAttrib = string(elevation.LayerTitle);
title("Grand Canyon")
subtitle(bmapAttrib + ", " + wmsAttrib,"FontSize",8)
axis off
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Adjust the camera view.

campos([-12400000 4240000 152000])
camva(5.4)
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Tips
• To request quantitative data, you must generally create either a Web Coverage Service (WCS)

request or a Web Feature Service (WFS) request. Mapping Toolbox does not support WCS or WFS
requests.

• Although BIL files can contain multiple co-registered bands (channels), the BIL files returned by
WMS servers include only a single band.

• The wmsread function interpolates the elevation data from the WMS server hosted by MathWorks
based on the specified latitude and longitude limits. As a result, the data associated with a
geographic location varies slightly depending on the limits used to read the data.

• The elevation data from the WMS server hosted by MathWorks does not contain bathymetry data.
• The elevation data from the WMS server hosted by MathWorks does not contain data for a small

region within Lake Superior.
• Map request URLs from the WMS server hosted by MathWorks are not supported by web

browsers or by the webread function.

See Also
Functions
wmsfind | wmsread | getMap

Objects
WebMapServer | WMSMapRequest
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Related Examples
• “Basic Workflow for Creating WMS Maps” on page 9-3
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Explore Layers on Same Server

You might find a layer you like in the WMS Database and want to find other layers on the same server.
You can explore other layers by using a capabilities document.

Specify the URL of the NASA SVS Image Server. Use the wmsinfo function to return the contents of
the capabilities document as a WMSCapabilities object. A capabilities document is an XML
document containing metadata that describes the geographic content a server offers.

serverURL = 'http://svs.gsfc.nasa.gov/cgi-bin/wms?';
capabilities = wmsinfo(serverURL)

capabilities = 
  WMSCapabilities

  Properties:
         ServerTitle: 'NASA SVS Image Server'
           ServerURL: 'http://svs.gsfc.nasa.gov/cgi-bin/wms?'
         ServiceName: 'WMS'
             Version: '1.3.0'
            Abstract: 'Web Map Server maintained by the Scientific Visualization Studio at NASA's Goddard Space Flight Center'
      OnlineResource: 'http://svs.gsfc.nasa.gov/'
  ContactInformation: [1x1 struct]
   AccessConstraints: 'none'
                Fees: 'none'
         KeywordList: {}
        ImageFormats: {'image/png'}
          LayerNames: {326x1 cell}
               Layer: [326x1 WMSLayer]
          AccessDate: '08-Apr-2021'

  Methods

Set the layer titles to a variable. View the first ten titles.

layerTitles = {capabilities.Layer.LayerTitle}';
layerTitles(1:10)

ans = 10×1 cell
    {'African Fires During 2002 (1024x1024 Animation)'                                   }
    {'Background Image for African Fires During 2002 (WMS)'                              }
    {'Aurora over the North Pole on April 17, 1999 (360x100 Animation)'                  }
    {'Background Image for Aurora over the North Pole on April 17, 1999 (WMS)'           }
    {'Satellite Imagery of Hurricane Dennis (512x512 Animation)'                         }
    {'Cumulative Earthquake Activity from 1980 through 1995 (1024x512 Animation)'        }
    {'Background Image for Cumulative Earthquake Activity from 1980 through 1995 (WMS)'  }
    {'Global Infrared Cloud Cover, September 2001 (2852x1009 Animation)'                 }
    {'Foreground Image for Global Infrared Cloud Cover, September 2001 (WMS)'            }
    {'Infrared Cloud Cover over the Atlantic Ocean, September 2001 (1024x1009 Animation)'}

Read the layer containing tropospheric ozone impacts. Display the map.

layerTitle = 'Tropospheric Ozone Impacts Global Climate Warming';
layer = refine(capabilities.Layer,layerTitle);
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[A,R] = wmsread(layer);

figure
worldmap(A,R)
geoshow(A,R)
title(layer.LayerTitle)

This layer contains data from different years. You can examine the available data by accessing the
layer.Details.Dimension structure.

layer.Details.Dimension

ans = struct with fields:
              Name: 'time'
             Units: 'ISO8601'
        UnitSymbol: ''
           Default: '1994-'
    MultipleValues: 0
      NearestValue: 0
           Current: 0
            Extent: '1884-/1994-/P1Y'

Display the map for the year 1884 and compare it with the map for 1994, the default year (displayed
previously).

year = '1884';
[A2,R] = wmsread(layer,'Time',year);
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figure
worldmap(A2,R)
geoshow(A2,R)
title({layer.LayerTitle,year})

See Also
wmsfind | wmsupdate | wmsread

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3
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Write WMS Layers to KML File

Some WMS server implementations, such as GeoServer, can render their maps in a non-image
format, such as KML. KML is an XML dialect used by Google Earth™ and Google Maps™ browsers.
The WebMapServer.getMap method and the wmsread function do not allow you to use the KML
format because they import only standard graphics image formats. Work around this limitation by
using the WMSMapRequest.RequestURL property.

Search the WMS Database for layers on any GeoServer. Refine the search to include only the layers
from the MassGIS server. Refine the search again to return a FEMA Flood Zone layer.

geoserver = wmsfind('geoserver','SearchField','any');
massgis = refine(geoserver,'massgis*wms','SearchField',...
   'serverurl');
floodzone = refine(massgis,'FEMA Flood Zones','SearchField',...
   'LayerTitle');
floodzone = floodzone(1);

Specify geographic limits for a region around Boston, Massachusetts.

latlim = [ 42.305  42.417];
lonlim = [-71.131 -70.99];

Create a WMSMapRequest object and set the geographic limits.

request = WMSMapRequest(floodzone);
request.Latlim = latlim;
request.Lonlim = lonlim;

Read the graphics image from the server.

[A,R] = wmsread(request.RequestURL);

Display the image on a map.

figure
usamap(A,R)
geoshow(A,R)
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Request an image format that opens in Google Earth.

request.ImageFormat = 'application/vnd.google-earth.kml+xml';

Use the websave function to write out a KML file.

filename = 'floodzone.kml';
websave(filename,request.RequestURL);

Open the file with Google Earth to view. On Windows® platforms, you can display the KML file by
uncommenting this code.

% winopen(filename)

For UNIX® and Mac users, you can display the KML file by uncommenting this code.

% cmd = 'googleearth ';
% fullfilename = fullfile(pwd, filename);   
% system([cmd fullfilename])

See Also
wmsfind | wmsupdate | wmsread | websave
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More About
• “Basic Workflow for Creating WMS Maps” on page 9-3
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Search for Layers Outside the WMS Database

Search for layers using a web browser instead of using the WMS Database.

Select a search engine. If you are using Google®, select Images and enter getmap wms into the
search box.

Choose a map by viewing the images. Click the map link and find the WMS GetCapabilities
request somewhere on the page. If you cannot find a GetCapabilities request, try another map.

For example, this code shows the URL of a WMS GetCapabilities request from the USGS National
Map.

url = ['https://basemap.nationalmap.gov/ArcGIS/services/USGSImageryOnly/' ...
       'MapServer/WMSServer?REQUEST=GetCapabilities&VERSION=1.3.0&SERVICE=WMS'];

Return the capabilities document by using the wmsinfo function.

c = wmsinfo(url);

Read a layer and display it on a world map.

layer = c.Layer(1);
[A,R] = wmsread(layer);

figure
worldmap("world")
geoshow(A,R)
mlabel off
plabel off
title("USGS Imagery")
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See Also
wmsfind | wmsupdate | wmsread

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3
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Create WMS Maps When Internet Access Is Intermittent

Reading data from WMS servers requires Internet access. However, once you read data from a server,
you can save the data as a MAT or GeoTIFF file. Then, you can load the data without reading it again
from the server. Saving WMS data to files is useful when you have intermittent Internet access, or
when you want to share data with someone without Internet access.

This example shows how to create a WMS map for an area around Boston. The behavior of the
example depends on whether you have Internet access, but the resulting map is the same.

Throughout the example, specify whether you have Internet access by using the logical scalar
useInternet.

• If useInternet is true, read data from the WMS server and update the saved files.
• If useInternet is false, read data from the saved files.

useInternet = false;

If you use this example as a model to create your own WMS maps, you must create the saved files the
first time you run the example by setting useInternet to true.

Search the WMS Database for basemap layers from the USGS National Map [1] on page 9-52.
Refine the search to find a layer containing only orthoimagery. This step does not require Internet
access, because the WMS Database is installed with Mapping Toolbox™.

bmapLayers = wmsfind("basemap.nationalmap","SearchFields","ServerURL");
usgsImageryLayer = refine(bmapLayers,"USGSImageryOnly","SearchFields","ServerURL");

Synchronize the layer with the server. The wmsupdate function adds an abstract, the attribute and
style information, and the coordinate reference system information to the layer.

• If useInternet is true, synchronize the layer with the server. Save the layer to a MAT file.
• If useInternet is false, load the MAT file.

if useInternet
    usgsImageryLayer = wmsupdate(usgsImageryLayer);
    save("usgsImageryLayer.mat","usgsImageryLayer")
else
    load usgsImageryLayer.mat
end

Specify the geographic limits and the image size. For this example, specify the limits for a region
around Boston and a square image with a side length of 750 pixels.

latlim = [42.3453 42.3711];
lonlim = [-71.099 -71.0454];
s = 750;

Read the image from the server.

• If useInternet is true, then read the map as an array and a GeographicCellsReference
object. Save the array and reference object to a GeoTIFF file.

• If useInternet is false, then read the GeoTIFF file.
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if useInternet
    [A,R] = wmsread(usgsImageryLayer,"Latlim",latlim,"Lonlim",lonlim, ...
        "ImageHeight",s,"ImageWidth",s);
    geotiffwrite("usgsImageryLayer.tif",A,R)
else
    [A,R] = readgeoraster("usgsImageryLayer.tif");
end

Create a map with appropriate latitude and longitude limits for the data. Display the map.

figure
usamap(A,R)
geoshow(A,R)

[1] Data available from U.S. Geological Survey, National Geospatial Program.

See Also
Functions
wmsread | wmsupdate

Objects
GeographicCellsReference | WMSLayer
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Related Examples
• “Basic Workflow for Creating WMS Maps” on page 9-3
• “Proxy Server Authentication”
• “Use Basemaps in Offline Environments” on page 6-71
• “Display Data over Basemaps When Internet Access Is Intermittent” on page 6-82
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Troubleshoot WMS Servers
In this section...
“Connection Errors” on page 9-54
“Intermittent Internet Access” on page 9-55
“Geographic Limits in Descending Order or Out of Bounds” on page 9-55
“Non-EPSG:4326 Coordinate Reference Systems” on page 9-55
“Map Not Returned” on page 9-56
“Unsupported WMS Version” on page 9-57
“Other Unrecoverable Server Errors” on page 9-57

Connection Errors
One of the challenges of working with WMS is that sometimes you can have trouble connecting to a
server.

Time-Out Error

A server might issue a time-out error such as Connection timed out: connect or Read timed
out.

Workaround: Try setting the 'TimeoutInSeconds' parameter of the wmsread, wmsinfo, or
wmsupdate function to a larger value. The time-out setting defaults to 60 seconds.

Unavailable Server

A server might be temporarily unavailable or busy, or the WMS server application might experience
an issue. In some cases, the server issues an HTTP response code of 500, such as:

Server returned HTTP response code: 500 for URL: http://xyz.com ...

Workarounds:

• Try again later.
• Try requesting a different image format by setting the 'ImageFormat' parameter.
• Try connecting multiple times by using a while loop and try, catch block. For example, this

code makes five attempts to get information about the USGS National Map Seamless server. If the
connection fails after five attempts, then the code errors.

numberOfAttempts = 5;
attempt = 0;
info = [];
serverURL = 'http://basemap.nationalmap.gov/ArcGIS/services/USGSImageryOnly/MapServer/WMSServer?';
while(isempty(info))
    try
        info = wmsinfo(serverURL);
        orthoLayer = info.Layer(1);
    catch e 
        
        attempt = attempt + 1;
        if attempt > numberOfAttempts
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            throw(e);
        else
            fprintf('Attempting to connect to server:\n"%s"\n', serverURL)
        end        
    end
end

Intermittent Internet Access
You have intermittent Internet access or you want to share WMS data with someone without Internet
access.

Workaround: Reading data from WMS servers requires Internet access. However, once you read
data from a server, you can save the data as a MAT or GeoTIFF file. Once you save the data, you can
load it without reading it again from the server. For more information, see “Create WMS Maps When
Internet Access Is Intermittent” on page 9-51.

Geographic Limits in Descending Order or Out of Bounds
Some servers do not follow the OGC specification guidelines regarding latitude and longitude limits.

The OGC specification requires, and the WMS functions expect, that the limits are ascending.
However, some sites have descending limits. As a result, you might see an error such as:

"??? Error using ==> WMSMapRequest>validateLimit at 1313
Expected the elements of 'Latlim' to be in ascending order." 

Additionally, some servers have limits that exceed the bounds of [-180,180] for longitude and [-90,90]
for latitude.

Workaround: Set the Latlim and Lonlim properties of the WMSLayer object:

layers = wmsfind('bluemarbleng');
layer = wmsupdate(layers(1));
latlim = [min(layer.Latlim), max(layer.Latlim)];
lonlim = [min(layer.Lonlim), max(layer.Lonlim)];
layer.Latlim = [max([ -90, latlim(1)]), min([ 90, latlim(2)])];
layer.Lonlim = [max([-180, lonlim(1)]), min([180, lonlim(2)])];
[A,R] = wmsread(layer);

You must update your layer before setting the limits. Otherwise, the wmsread function updates the
limits from the server, and you once again have unsupported limits.

Non-EPSG:4326 Coordinate Reference Systems
Some layers are not defined in the EPSG:4326 or CRS:84 coordinate reference system. Reading these
layers with the wmsread function is not supported.

Workaround: Construct a request URL by using the WMSMapRequest object and read the layer by
using the getMap object function. For more information, see “Read WMS Maps Using Different
Coordinate Reference Systems” on page 9-11.
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Map Not Returned
Sometimes you can connect to the WMS server, but you do not receive the map you are expecting.

Blank Map Returned

A server might return a blank map.

Workaround: You can change the scale of your map; either increase the image height and width or
change the geographic bounds. Another possibility is that your requested geographic extent lies
outside the extent of the layer, in which case you should change the extent of your request. A third
possibility is that you have the wrong image format selected; in this case, change the
'ImageFormat' parameter.

HTML File Returned

You might see this error message:

The server returned an HTML file instead of an image file.

Workaround: Follow the directions in the error message. The following example, which uses a
sample URL, illustrates the type of error message you receive.

% Example command.
[A,R] = wmsread(['https://www.mathworks.com?',...
'&BBOX=-180,-90,180,90&CRS=EPSG:4326&VERSION=1.1.1']);

Sample error message:

Error using WebMapServer>issueReadGetMapError (line 974)
The server returned an HTML file instead of an image file. 
You may view the complete error message by issuing the command,
 web('https://www.mathworks.com?&BBOX=-180,-90,180,90&CRS=EPSG:4326&VERSION=1.1.1')
  or
 urlread('https://www.mathworks.com?&BBOX=-180,-90,180,90&CRS=EPSG:4326&VERSION=1.1.1').
 
Error in WebMapServer>readImageFormat (line 874)
        issueReadGetMapError(filename, requestURL);

Error in WebMapServer>readGetMapFile (line 852)
    A = readImageFormat(filename, requestURL);

Error in WebMapServer/getMap (line 299)
            A = readGetMapFile(filename, h.RequestURL);

Error in wmsread (line 376)
A = server.getMap(mapRequestURL);

XML File Returned

The server issues a very long error message, beginning with this phrase:

An error occurred while attempting to get the map from the server. 
The error returned is <?xml version="1.0" encoding="utf-8"?> ...

Workaround: This problem occurs because the server breaks with the requirements of the OGC
standard and returns the XML capabilities document rather than the requested map. Choose a
different layer or server.
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Unsupported WMS Version
In rare cases, the server uses a different and unsupported WMS version. In this case, you receive an
error message such as:

The WMS version, '1.2.0', listed in layer.Details.Version is not 
supported by the server. The supported versions are: '1.0.0' '1.1.0' 
'1.1.1' '1.3.0' .

Workaround: Choose a different server.

Other Unrecoverable Server Errors
The server issues an error indicating that no correction or workaround exists. These cases result in
the following types of error messages:

Server redirected too many  times (20)

An error occurred while attempting to parse the XML capabilities 
document from the server.

Unexpected end of file from server

An error occurred while attempting to get the map from the server. 
The server returned a map containing no data.

See Also
wmsfind | wmsupdate | wmsread

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3
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Introduction to Web Map Display
Web maps are interactive maps that are accessed through web pages. As a result, they require a live
Internet connection. Using Mapping Toolbox software, you can:

• Display web maps.
• Interactively or programmatically pan and zoom.
• Select the maps to display, called base layers or basemaps. The webmap function provides a set of

basemaps from which you can choose, for example 'Open Street Map'. You can also use WMS
Layers and define custom basemaps.

• Add vector data, called overlay layers, such as lines and markers.
• Share your results using printing capabilities or the MATLAB publish command.

Note To display a web map using the toolbox, you must have an Internet connection. MathWorks
cannot guarantee the stability and accuracy of web maps, as the servers are located on the Internet
and are independent from MathWorks. Occasionally, maps may be slow to display, display partially, or
fail to display, because web map servers can become unavailable for short periods of time.

The graphics in web maps are not part of MATLAB graphics.

For example, this image shows the default web map display, including the pan tool, zoom tool, scale
bar, Layer Manager expander arrow, and current pointer location.
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Open the Layer Manager by clicking the expander arrow  in the web map toolbar. Use the Layer
Manager to select a basemap layer and display overlay layers.
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Web Map Coordinate Systems
When displaying named base layers, or a WMSLayer array in a coordinate reference system of
EPSG:900913, the projected coordinate system is "Web Mercator". Otherwise, when displaying a
WMSLayer array, the projected coordinate system is EPSG:4326. These projections include a
geographic quadrangle bounded north and south by parallels (which map to horizontal lines) and east
and west by meridians (which map to vertical lines).

See Also
webmap | wmlimits | wmzoom | wmcenter | wmclose | addCustomBasemap

More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
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Basic Workflow for Displaying Web Maps

Workflow Summary
The web map display is an interactive capability, so there is no specific workflow required. The
following is one way to approach working with web map displays.

1 Display the default web map, using the webmap function. You can also specify a base layer (also
called a basemap) when you create the web map with the webmap function.

2 Select a base layer map from the Layer Manager. The toolbox supports over a dozen base layers
from popular web map providers. You can also add custom base layers.

3 Navigate around the web map, using the zoom tool and moving the map interactively (panning).
You can also specify the visible portion of the web map programmatically using the wmlimits,
wmzoom, and wmcenter functions.

4 Select additional layers to overlay on your web map from the overlay layers listed in the Layer
Manager. You can also create overlay layers using the wmline, wmmarker, and wmpolygon
functions. Use wmremove to remove layers that you’ve added.

5 Print the map, using the wmprint function.
6 Close the map, using the wmclose function.

See Also

More About
• “Introduction to Web Map Display” on page 9-58
• “Display a Web Map” on page 9-62
• “Select a Base Layer Map” on page 9-63
• “Specify a Custom Base Layer” on page 9-65
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Display a Web Map
To display web map data, use the webmap function. By default, webmap displays the World Street
Map, centered at latitude and longitude [0 0], but you select other base layers from the Layer
Manager. Web maps are interactive, which means you can navigate the map interactively by using the
pan and zoom controls, your mouse, or the arrow keys. By default, you can pan across the map
continuously, across the 180 meridian.

webmap

See Also
webmap

More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
• “Select a Base Layer Map” on page 9-63
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Select a Base Layer Map
Once you open a web map, you can change the base layer (basemap) by using the Layer Manager. To
open the Layer Manager, select the expander arrow  on the right side of the window. For example,
change the basemap to Light Gray Canvas Map. This map is useful for displaying vector data.

Close the Layer Manager.

 Select a Base Layer Map

9-63



You can also specify the base layer programmatically when you open the web map, by including the
name of the layer as an argument to the webmap function. The following example opens the web map,
displaying the Light Gray Canvas Map. For a list of all the named base layers supported, see the
webmap function. The examples includes the optional parameter Wraparound that causes the map
display to be truncated at the -180 degree and +180 degree meridians. By default, maps are
continuous.

webmap('Light Gray Canvas Map','WrapAround',false)

See Also
webmap | wmsfind | wmsupdate

More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
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Specify a Custom Base Layer
The webmap function provides a selection of over a dozen base layers (basemaps) which provide a
variety of geographic backdrops on which you can plot your data. See the webmap function for a
complete list. In some cases, you might want to plot your data over a map of your own choosing. To
do this, specify a custom base layer by using the addCustomBasemap function. The following
example shows how to specify a high-resolution topographical map as a custom base layer.

1 Specify the URL of the website that provides the map data. In this example, for better load
balancing, the web map provides three servers that you can use: a, b, or c.

url = 'a.tile.opentopomap.org';
2 Define the name that you will use to specify the custom base layer programmatically. For

example, you can use this name with the webmap command or, if you want to delete the custom
map, with the removeCustomBasemap function.

name = 'opentopomap';
3 Create an attribution to display on the map that gives credit to the provider of the map data. Web

map providers might define specific requirements for the attribution.

copyright = char(uint8(169));
attribution = [ ...
      "map data:  " + copyright + "OpenStreetMap contributors,SRTM", ...
      "map style: " + copyright + "OpenTopoMap (CC-BY-SA)"];

4 Define the name that will appear in the Layer Manager to identify the custom base layer.

displayName = 'Open Topo Map';
5 Add the custom base layer to the list of base layers available through the Layer Manager. When

you add a custom base layer, the addition is persistent between MATLAB sessions.

addCustomBasemap(name,url,'Attribution',attribution, ...
    'DisplayName',displayName)

6 Open a web map. Expand the Layer Manager and find the listing for the custom base layer in the
list of base layers. To view the custom base layer, select the map in the Layer Manager. You can
also specify the name you assigned to the map as an argument to the webmap function.

webmap opentopomap
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See Also
webmap | addCustomBasemap | removeCustomBasemap

More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
• “Specify a WMS Layer as a Base Layer” on page 9-67

9 Creating Web Map Service Maps

9-66



Specify a WMS Layer as a Base Layer
Display a WMS layer in a web map by using the webmap function. The following example shows how
to use Web Map Service functions to connect with a Web server, retrieve a layer, and display it in a
web map. Change the view using your mouse.

info = wmsinfo("https://neo.gsfc.nasa.gov/wms/wms?")
nasa = info.Layer;
baselayer = refine(nasa,"bluemarbleng",  ...
      "SearchField","layername","MatchType","exact");
baselayer = wmsupdate(baselayer);
webmap(baselayer)

Web maps do not support layers from wms.mathworks.com.

See Also
webmap | wmsfind | wmsupdate
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More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
• “Specify a Custom Base Layer” on page 9-65
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Add an Overlay Layer to the Map
Add a layer of vector data over the base layer map by using the Layer Manager. For example open a
web map by calling the webmap function and then open the Layer Manager by clicking the expander
arrow . Then, choose the Light Gray Canvas Map base layer and overlay the World Boundaries
(Dark Text) vector data.

Close the layer manager and then navigate the map using your mouse or arrow keys.
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See Also
webmap | wmsfind | wmsupdate

More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
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Add Line, Polygon, and Marker Overlay Layers to Web Maps
This example shows how to add line, polygon, and marker overlay layers to a web map. Overlay layers
can add information, such as, state borders and coast lines, to a base layer map. The toolbox includes
functions to draw lines, polygons, and web markers on a web map.

For example, to draw a multifaceted line or multiple lines on a map, use the wmline function. You use
latitude and longitude values to specify the points that define the line. Similarly, to draw a polygon,
use the wmpolygon function, specifying latitude and longitude values that define the vertices of the
polygon. You can also add markers, or map pins, to identify points of interest on a web map using the
wmmarker function.

The following example illustrates these capabilities.

1 Load latitude and longitude data. This creates two variables in the workspace: coastlat and
coastlon.

load coastlines
2 Use the latitude and longitude data to define a line overlay. wmline draws the overlay on the

current web map or, if none exists, it creates a new web map. The example includes several
optional parameters to specify the line width and the name you want associated with the line.

wmline(coastlat,coastlon,'LineWidth',3,'FeatureName','coastline')
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3 The wmline command adds the new overlay to the list of overlays in the Layer Manager. By
default, this layer is called Line Overlay 1.
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4 Use the same latitude and longitude data to define a polygon overlay. wmpolygon interprets the
latitudes and longitudes as the vertices of a polygon, and draws the overlay on the current web
map. The example includes several optional parameters to specify the line width and the name
you want associated with the line.

wmpolygon(coastlat,coastlon,'FeatureName','coastline','FaceColor','green')
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5 The wmpolygon command adds the polygon overlay to the list of overlays in the Layer Manager.
By default, this layer is called Polygon Overlay 2.
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6 Add a marker to the web map by using the wmmarker function. Display information about the
marker by clicking on it. The wmmarker function adds the marker overlay to the list of overlays
in the Layer Manager. By default, this layer is called Marker Overlay 3.

wmmarker(10.5000,-66.8992,'FeatureName','Caracas')
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See Also
webmap | wmline | wmpolygon | wmmarker | wmremove

More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
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Remove Overlay Layers on a Web Map
To remove an overlay layer on a web map, use the wmremove function. When called without an
argument, wmremove deletes the most recently added overlay layer. You can also remove a particular
overlay by specifying the handle of the line or marker overlay. The following example illustrates this
capability.

1 Load latitude and longitude data. This command loads two variables into the workspace:
coastlat and coastlon.

load coastlines
2 Add a line overlay of the coastline data and set the overlay to a variable using the wmline

function. There is no current web map, so wmline creates one.

h = wmline(coastlat,coastlon,'Width',3,'FeatureName','coastline');

3 Add a marker overlay and set it to a variable using the wmmarker function. The marker
highlights the location of the city of Caracas. Note that the overlays are listed in the Layer
Manager as Line Overlay 1 and Marker Overlay 2.

h2 = wmmarker(10.5000,-66.8992,'FeatureName','Caracas');
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4 Remove one of the overlays by using the wmremove function. When called without an argument,
wmremove deletes the most recent overlay. In this case, wmremove removes the marker overlay.
The wmremove function also removes the marker entry in the Layer Manager.

wmremove
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5 Remove a particular overlay by specifying it when you call wmremove. For example, remove the
line overlay.

wmremove(h)
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See Also
webmap | wmline | wmpolygon | wmmarker | wmremove

More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
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Navigate a Web Map
Web maps created using the webmap function are interactive. View a portion of the map in more
detail by using the zoom control or scroll wheel. Move the map in any direction by using the pan tool
or arrow keys, or clicking and dragging the mouse. Alternatively, you can position the map
programmatically using the wmzoom, wmlimits, and wmcenter functions.

For example, open a web map using the webmap function. By default, webmap displays the entire
map, scaled to fit the window and centered at latitude and longitude [0 0]. This image shows the
pan tool outlined in red and the zoom tool outlined in blue. Use the tools to center the map on Brazil.

webmap

You can perform the same navigation programmatically. For example, open a web map that is
centered on Brazil using the wmcenter function. Specify the latitude and longitude of the center
point and the zoom level as arguments.

wmcenter(-15.6000,-56.1003,4)

 Navigate a Web Map
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You can also customize your view of a web map by specifying the latitude and longitude limits. For
example, retrieve the current latitude and longitude limits using the wmlimits function. Depending
on the size of the web map, your limits may be different.

[latlim,lonlim] = wmlimits 

latlim =

  -36.5081    7.6476

lonlim =

  -88.7077  -23.4929

You can then open a new web map, specifying these latitude and longitude limits using the wmlimits
function.

wmlimits(latlim,lonlim) 

The displayed limits may not match the specified limits because the zoom level is quantized to
discrete integer values and the longitude limits may be constrained.

See Also
webmap | wmsfind | wmsupdate | wmcenter

More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
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Close a Web Map
To programmatically close a web map, use the wmclose function.

When called without an argument, wmclose closes the current web map. You can also specify which
web map to close by specifying a handle to the web map. To close all currently open web maps, call
wmclose specifying the 'all' argument.

The following example opens several web maps, closes a specific web map, and then closes all open
web maps.

1 Open several web maps, getting the handles to the web maps.

wm1 = webmap;
wm2 = webmap('Light Gray');
wm3 = webmap('Open Street');

2 Close a specific web map, using its handle.

wmclose(wm3)
3 Close all web maps that remain open. You can also use the command form: wmclose all.

wmclose('all')

See Also
webmap | wmclose

More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
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Annotate a Web Map with Measurement Information
This example shows how to use a map to get information about a geographic feature. To illustrate,
this example measures the length of the Gross Reservoir and adds some markers and a line overlay
that act as annotations on the map.

Open a web map centered on the Gross Reservoir west of Boulder, Colorado. Use the USGS Shaded
Topographic Map to get the level of topographical detail required for this measurement.

webmap('usgsshadedtopographicmap') 
lat = 39.9428; 
lon = -105.3691; 
zoom = 14; 
wmcenter(lat,lon,zoom) 

Identify two points at opposite ends of the lake and get the latitude and longitude of these points. To
get this information in a web map, move the mouse pointer over a location on the map. In the upper
right corner, the window displays the geographic coordinates of the point.
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Store the latitude and longitude information in a geoshape vector.

lat1 = 39.93504;
lon1 = -105.38069;
lat2 = 39.95226;
lon2 = -105.35892;
s = geoshape([lat1 lat2],[lon1 lon2])

s = 

 1×1 geoshape vector with properties:

 Collection properties:
     Geometry: 'line'
     Metadata: [1×1 struct]
 Vertex properties:
     Latitude: [39.9350 39.9523]
    Longitude: [-105.3807 -105.3589]

Calculate the distance between the two points to get the length of the reservoir. Use the distance
function which calculates the distance between points on a sphere or ellipsoid.
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d = distance(s.Latitude(1),s.Longitude(1),s.Latitude(2), ...
    s.Longitude(2),wgs84Ellipsoid)

d =

   2.6678e+03

Display a line between the two points. Include information about the length of the lake in the line’s
information balloon. Store the distance and information about units as two dynamic fields added to
the geoshape vector.

s.Distance = round(d);
s.Units = 'meters';

wmline(s,'Color','red','FeatureName','Length of Gross Reservoir', ...
    'Overlayname','Transect');

See Also
webmap | wmsfind | wmsupdate | wmmarker | wmline | wmpolygon | wmremove | geoshape
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More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
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Compositing and Animating Web Map Service (WMS)
Meteorological Layers

This example shows how to composite and animate data from multiple Web Map Service (WMS)
layers.

The base layer is from the NASA Goddard Space Flight Center's Scientific Visualization Studio (SVS)
Image Server. The data in this layer shows satellite cloud data during Hurricane Katrina from August
23 through August 30, 2005. The layer consists of cloud data extracted from GOES-12 imagery and
overlaid on a color image of the southeast United States.

Next-Generation Radar (NEXRAD) images, collected by the Iowa State University's Iowa
Environmental Mesonet (IEM) Web map server, are composited with the cloud data at regular
intervals of time.

In particular, this example will show you how to:

• Use the WMS database to find the Katrina and NEXRAD layers
• Retrieve the Katrina base map from a WMS server at a particular time-step
• Retrieve the NEXRAD map from a WMS server at the same time-step
• Composite the base map with the map containing the NEXRAD imagery
• View the composited map in a projected coordinate system
• Retrieve, composite, and animate multiple time sequences
• Create a video file and animated GIF file of the animation

Understanding Basic WMS Terminology

If you are new to WMS, several key concepts are important to understand and are listed here.

• Web Map Service --- The Open Geospatial Consortium (OGC) defines a Web Map Service (WMS) to
be an entity that "produces maps of spatially referenced data dynamically from geographic
information."

• WMS server --- A server that follows the guidelines of the OGC to render maps and return them to
clients

• map --- The OGC definition for map is "a portrayal of geographic information as a digital image file
suitable for display on a computer screen."

• layer --- A dataset of a specific type of geographic information, such as temperature, elevation,
weather, orthophotos, boundaries, demographics, topography, transportation, environmental
measurements, and various data from satellites

• capabilities document --- An XML document containing metadata describing the geographic
content offered by a server

Internet Access

Since WMS servers are located on the Internet, this example can be set to access the Internet to
dynamically render and retrieve maps from WMS servers or it can be set to use data previously
retrieved from the Internet using the WMS capabilities but now stored in local files. You can use a
variable, useInternet, to determine whether to read data from locally stored files, or retrieve the
data from the Internet.
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If the useInternet flag is set to true, then an Internet connection must be established to run the
example. Note that the WMS servers may be unavailable, and several minutes may elapse before the
maps are returned. One of the challenges of working with WMS servers is that sometimes you will
encounter server errors. A function, such as wmsread, may time out if a server is unavailable. Often,
this is a temporary problem and you will be able to connect to the server if you try again later.

This example writes data to files if useInternet is true or reads data from files if useInternet is
false. You can store the data locally the first time you run the example and then set the
useInternet flag to false.

useInternet = false;

Step 1: Find Katrina Layers From Local Database

One of the more challenging aspects of using WMS is finding a WMS server and then finding the
layer that is of interest to you. The process of finding a server that contains the data you need and
constructing a specific and often complicated URL with all the relevant details can be very daunting.

The Mapping Toolbox™ simplifies the process of locating WMS servers and layers by providing a
local, installed, and pre-qualified WMS database, that is searchable, using the function wmsfind. You
can search the database for layers and servers that are of interest to you. Here is how you find layers
containing the term katrina in either the LayerName or LayerTitle field of the database:

katrina = wmsfind('katrina');
whos katrina

  Name          Size            Bytes  Class       Attributes

  katrina      34x1             16754  WMSLayer              

The search for the term 'katrina' returned a WMSLayer array containing multiple layers. To
inspect information about an individual layer, simply display it like this:

katrina(1)

ans = 
  WMSLayer

  Properties:
           Index: 1
     ServerTitle: 'NASA SVS Image Server'
       ServerURL: 'https://svs.gsfc.nasa.gov/cgi-bin/wms?'
      LayerTitle: 'GOES-12 Imagery of Hurricane Katrina: Longwave Infrared Close-up (1024x1024 Animation)'
       LayerName: '3216_22510'
          Latlim: [15.0000 45.0000]
          Lonlim: [-100.0000 -70.0000]

  Methods

If you type, katrina, in the command window, the entire contents of the array are displayed, with
each element's index number included in the output. This display makes it easy for you to examine
the entire array quickly, searching for a layer of interest. You can display only the LayerTitle
property for each element by executing the command:

disp(katrina,'Properties','layertitle','Index','off','Label','off');
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As you've discovered, a search for the generic word 'katrina' returned results of many layers and
you need to select only one layer. In general, a search may even return thousands of layers, which
may be too large to review individually. Rather than searching the database again, you may refine
your search by using the refine method of the WMSLayer class. Using the refine method is more
efficient and returns results faster than wmsfind since the search has already been narrowed to a
smaller set. Supplying the query string, 'goes-12*katrina*visible*close*up*animation', to
the refine method returns a WMSLayer array whose elements contain a match of the query string in
either the LayerTitle or LayerName properties. The * character indicates a wild-card search. If
multiple entries are returned, select only the first one from the svs.gsfc.nasa.gov server.

katrina = refine(katrina,'goes-12*katrina*visible*close*up*animation');
katrina = refine(katrina,'svs.gsfc.nasa.gov','Searchfield','serverurl');
katrina = katrina(1);
whos katrina

  Name         Size            Bytes  Class       Attributes

  katrina      1x1               466  WMSLayer              

Step 2: Synchronize WMSLayer Object with Server

The database only stores a subset of the layer information. For example, information from the layer's
abstract, details about the layer's attributes and style information, and the coordinate reference
system of the layer are not returned by wmsfind. To return all the information, you need to use the
wmsupdate function. wmsupdate synchronizes the layer from the database with the server, filling in
the missing properties of the layer.

Synchronize the first katrina layer with the server in order to obtain the abstract information. Since
this action requires access to the Internet, call wmsupdate only if the useInternet flag is true.

if useInternet
    katrina = wmsupdate(katrina);
    save('katrina.mat','katrina')
else
    load('katrina.mat')
end

Display the abstract information of the layer. Use isspace to help determine where to line wrap the
text.

abstract = katrina.Abstract;
endOfLine = find(isstrprop(abstract,'cntrl'),1);
abstract = abstract(1:endOfLine);
numSpaces = 60;
while(~isempty(abstract))
    k = find(isspace(abstract));
    n = find(k > numSpaces,1);
    if ~isempty(n)
        fprintf('%s\n',abstract(1:k(n)))
        abstract(1:k(n)) = [];
    else
        fprintf('%s\n',abstract)
        abstract = '';
    end
end

The GOES-12 satellite sits at 75 degrees west longitude at an 
altitude of 36,000 kilometers over the equator, in geosynchronous 
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orbit.  At this position its Imager instrument takes pictures 
of cloud patterns in several wavelengths for all of North and 
South America, a primary measurement used in weather forecasting. 
 The Imager takes a pattern of pictures of parts of the Earth 
in several wavelengths all day, measurements that are vital in 
weather forecasting.  This animation shows a daily sequence of 
GOES-12 images in the visible wavelengths, from 0.52 to 0.72 
microns, during the period that Hurricane Katrina passed through 
the Gulf of Mexico.  At one kilometer resolution, the visible 
band measurement is the highest resolution data from the Imager, 
which accounts for the very high level of detail in these images. 
 For this animation, the cloud data was extracted from GOES image 
and laid over a background color image of the southeast United 

States.

Note that this abstract information, including any typographical issues and incomplete fragments,
was obtained directly from the server.

Step 3: Explore Katrina Layer Details

You can find out more information about the katrina layer by exploring the Details property of the
katrina layer. The Details.Attributes field informs you that the layer has fixed width and fixed
height attributes, thus the size of the requested map cannot be modified.

katrina.Details.Attributes

ans = struct with fields:
      Queryable: 0
       Cascaded: 0
         Opaque: 1
      NoSubsets: 1
     FixedWidth: 1024
    FixedHeight: 1024

The Details.Dimension field informs you that the layer has a time dimension

katrina.Details.Dimension

ans = struct with fields:
              Name: 'time'
             Units: 'ISO8601'
        UnitSymbol: ''
           Default: '2005-08-30T17:45Z'
    MultipleValues: 0
      NearestValue: 0
           Current: 0
            Extent: '2005-08-23T17:45Z/2005-08-30T17:45Z/P1D'

with an extent from 2005-08-23T17:45Z to 2005-08-30T17:45Z with a period of P1D (one day),
as shown in the Details.Dimension.Extent field.

katrina.Details.Dimension.Extent

ans = 
'2005-08-23T17:45Z/2005-08-30T17:45Z/P1D'
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Step 4: Retrieve Katrina Map from Server

Now that you have found a layer of interest, you can retrieve the raster map using the function
wmsread and display the map using the function geoshow. Since Time is not specified when reading
the layer, the default time, 2005-08-30T17:45Z, is retrieved as specified by the
Details.Dimension.Default field. If the useInternet flag is set to true, then cache the image
and reference object in a GeoTIFF file.

if useInternet
    [katrinaMap,R] = wmsread(katrina);
    geotiffwrite('katrina.tif',katrinaMap,R)
else
    [katrinaMap,R] = readgeoraster('katrina.tif');
end

Display the katrinaMap and overlay the data from the usastatehi.shp file.

states = readgeotable('usastatehi.shp');
figure
usamap(katrina.Latlim, katrina.Lonlim)
geoshow(katrinaMap,R)
geoshow(states,'FaceColor','none')
title({katrina.LayerTitle, katrina.Details.Dimension.Default}, ...
    'Interpreter','none')
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Step 5: Find NEXRAD Radar Layer

NEXRAD radar images for the United States are stored on the Iowa State University's IEM Web map
server. The server conveniently stores NEXRAD images in five minute increments from 1995-01-01
to the present time. You can find the layer by first searching for the term IEM WMS Service in the
ServerTitle field of the WMS database, then refining the search by requesting the layer of interest,
nexrad-n0r-wmst.

iemLayers = wmsfind('IEM WMS Service','SearchField','servertitle');
nexrad = refine(iemLayers,'nexrad-n0r-wmst');

Synchronize the layer with the server.

if useInternet
    nexrad = wmsupdate(nexrad);
    save('nexrad.mat','nexrad')
else
    load('nexrad.mat');
end

Step 6: Obtain Extent Parameters

To composite the nexrad layer with the katrina layer, you need to obtain the nexrad layer at
coincidental time periods, and concurrent geographic and image extents. The Details.Dimension
field informs you that the layer has a time dimension,

nexrad.Details.Dimension

ans = struct with fields:
              Name: 'time'
             Units: 'ISO8601'
        UnitSymbol: ''
           Default: '2006-06-23T03:10:00Z'
    MultipleValues: 0
      NearestValue: 0
           Current: 0
            Extent: '1995-01-01/2022-12-31/PT5M'

and the Details.Dimension.Default field informs you that the layer's time extent includes
seconds.

nexrad.Details.Dimension.Default

ans = 
'2006-06-23T03:10:00Z'

Obtain a time value coincidental with the katrina layer, and add seconds to the time specification.

nexradTime = [katrina.Details.Dimension.Default(1:end-1) ':00Z'];

Assign latlim and lonlim variables to specify the limits for the nexrad layer. Set the values to the
limits of the katrina layer so that the geographic areas match. Note that the nexrad layer's
southern latitude limit does not extend as far south as the katrina layer's southern latitude limit.
The values that lie outside the geographic bounding quadrangle of the nexrad layer are set to the
background color.

fprintf('%s%d\n','Southern latitude limit of NEXRAD  layer: ',nexrad.Latlim(1))
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Southern latitude limit of NEXRAD  layer: 24

fprintf('%s%d\n','Southern latitude limit of Katrina layer: ',katrina.Latlim(1))

Southern latitude limit of Katrina layer: 10

latlim = katrina.Latlim;
lonlim = katrina.Lonlim;

Assign imageHeight and imageWidth variables.

imageHeight = katrina.Details.Attributes.FixedHeight;
imageWidth  = katrina.Details.Attributes.FixedWidth;

Step 7: Retrieve NEXRAD Radar Map from Server

You can retrieve the nexradMap from the server, specified at the same time as the katrinaMap and
for the same geographic and image extents, by supplying parameter/value pairs to the wmsread
function. To accurately retrieve the radar signal from the map, set the ImageFormat parameter to
the image/png format. In order to easily retrieve the signal from the background, set the
background color to black ([0 0 0]).

Retrieve the nexradMap.

black = [0 0 0];
if useInternet
    [nexradMap,R] = wmsread(nexrad, ...
        'Latlim',latlim,'Lonlim',lonlim,'Time',nexradTime, ...
        'BackgroundColor',black,'ImageFormat','image/png', ...
        'ImageHeight',imageHeight,'ImageWidth',imageWidth);
    geotiffwrite('nexrad.tif',nexradMap,R)
else
    [nexradMap,R] = readgeoraster('nexrad.tif');
end

Display the nexradMap.

figure
usamap(latlim,lonlim)
geoshow(nexradMap,R)
geoshow(states,'FaceColor','none','EdgeColor',[0.9 0.9 0.9])
title({nexrad.LayerTitle, nexradTime},'Interpreter','none');
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Step 8: Composite NEXRAD Radar Map with Katrina Map

To composite the nexradMap with a copy of the katrinaMap, you need to identify the non-
background pixels in the nexradMap. The nexradMap data is returned as an image with class
double, because of how this web map server handles PNG format, so you need convert it to uint8
before merging.

Identify the pixels of the nexradMap image that do not contain the background color.

threshold = 0;
index = any(nexradMap > threshold, 3);
index = repmat(index,[1 1 3]);

Composite the nexradMap with the katrinaMap.

combination = katrinaMap;
combination(index) = uint8(nexradMap(index)*255);

Display the composited map.

figure
usamap(latlim,lonlim)
geoshow(combination,R)
geoshow(states,'FaceColor','none')
title({'GOES 12 Imagery of Hurricane Katrina', ...
    'Composited with NEXRAD Radar',nexradTime})
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Step 9: Initialize Variables to Animate the Katrina and NEXRAD Maps

The next step is to initialize variables in order to animate the composited katrina and nexrad
maps.

Create variables that contain the time extent of the katrina layer.

extent = katrina.Details.Dimension.Extent;
slash = '/';
slashIndex = strfind(extent,slash);
startTime = extent(1:slashIndex(1)-1);
endTime = extent(slashIndex(1)+1:slashIndex(2)-1);

Calculate numeric values for the start and end days. Note that the time extent is in yyyy-mm-dd
format.

hyphen = '-';
hyphenIndex = strfind(startTime,hyphen);
dayIndex = [hyphenIndex(2) + 1, hyphenIndex(2) + 2];
startDay = str2double(startTime(dayIndex));
endDay = str2double(endTime(dayIndex));

Assign the initial katrinaTime.

katrinaTime = startTime;

Since multiple requests to a server are required for animation, it is more efficient to use the
WebMapServer and WMSMapRequest classes.
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Construct a WebMapServer object for each layer's server.

nasaServer = WebMapServer(katrina.ServerURL);
iemServer  = WebMapServer(nexrad.ServerURL);

Create WMSMapRequest objects.

katrinaRequest = WMSMapRequest(katrina, nasaServer);
nexradRequest  = WMSMapRequest(nexrad, iemServer);

Assign properties.

nexradRequest.Latlim = latlim;
nexradRequest.Lonlim = lonlim;
nexradRequest.BackgroundColor = black;
nexradRequest.ImageFormat = 'image/png';
nexradRequest.ImageHeight = imageHeight;
nexradRequest.ImageWidth  = imageWidth;

Step 10: Create Animation Files

An animation can be viewed in the browser when the browser opens an animated GIF file or an AVI
video file. To create the animation frames of the WMS basemap and vector overlays, create a loop
through each day, from startDay to endDay, and obtain the katrinaMap and the nexradMap for
that day. Composite the maps into a single image, display the image, retrieve the frame, and store the
results into a frame of an AVI file and a frame of an animated GIF file.

To share with others or to post to web video services, create an AVI video file containing all the
frames using the VideoWriter class.

videoFilename = fullfile(pwd,'wmsanimated.avi');
if exist(videoFilename,'file')
    delete(videoFilename)
end
writer = VideoWriter(videoFilename);
writer.FrameRate = 1;
writer.Quality = 100;
open(writer)

The animation is viewed in a single map display. Outside the animation loop, create a map display.
Initialize hmap, used in the loop as the return handle from the function geoshow, so it can be deleted
on the first pass through the loop. Loop through each day, retrieve and display the WMS map, and
save the frame.

fig = figure;
usamap(latlim,lonlim)
hstates = geoshow(states,'FaceColor','none');
hmap = [];

for k = startDay:endDay
    
    % Update the time values and assign the Time property for each server.
    currentDay = num2str(k);
    katrinaTime(dayIndex) = currentDay;
    nexradTime = [katrinaTime(1:end-1) ':00Z'];
    katrinaRequest.Time = katrinaTime;
    nexradRequest.Time = nexradTime;
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    % Retrieve the WMS map of Katrina from the server (or file)
    % for this time period.
    nmKatrina = ['katrina_' num2str(currentDay) '.tif'];
    if useInternet
        katrinaMap = getMap(nasaServer, katrinaRequest.RequestURL);
        geotiffwrite(nmKatrina, katrinaMap, katrinaRequest.RasterRef)
    else
        katrinaMap = readgeoraster(nmKatrina);
    end
    
    % Retrieve the WMS map of the NEXRAD imagery from the server (or file)
    % for this time period.
    nmNEXRAD = ['nexrad_' num2str(currentDay) '.tif'];
    if useInternet
        nexradMap = getMap(iemServer, nexradRequest.RequestURL);
        geotiffwrite(nmNEXRAD, nexradMap, nexradRequest.RasterRef)
    else
        nexradMap = readgeoraster(nmNEXRAD);
    end
    
    % Identify the pixels of the nexradMap image that do not contain the
    % background color.
    index = any(nexradMap > threshold, 3);
    index = repmat(index,[1 1 3]);
    
    % Composite nexradMap with katrinaMap.
    combination = katrinaMap;
    combination(index) = uint8(nexradMap(index)*255);
    
    % Delete the old map and display the new composited map.
    delete(hmap)
    hmap = geoshow(combination, katrinaRequest.RasterRef);
    uistack(hstates,'top')
    title({'GOES 12 Imagery of Hurricane Katrina', ...
        'Composited with NEXRAD Radar',nexradTime})
    drawnow
    
    % Save the current frame as an RGB image.
    currentFrame = getframe(fig);
    RGB = currentFrame.cdata;
    
    % Create an indexed image for each RGB frame in order to display an
    % animated GIF. 
    if k == startDay
        % The first time through the loop, convert the RGB image to
        % an indexed image and save the colormap into the
        % variable, cmap. Use cmap to convert later frames.
        [frame,cmap] = rgb2ind(RGB,256,'nodither');
        
        % Use the size of the first frame and the total
        % number of frames to initialize animated with
        % a size large enough to contain all the frames.
        frameSize = size(frame);
        numFrames = endDay - startDay + 1;
        animated = zeros([frameSize 1 numFrames],'like',frame);
    else
        % Use the colormap from the first frame conversion and
        % convert this frame to an indexed image.
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        frame = rgb2ind(RGB,cmap,'nodither');
    end
   
    % Store the frame into the animated array for the GIF file.
    frameCount = k - startDay + 1;
    animated(:,:,1,frameCount) = frame;
    
    % Write the RGB frame to the AVI file.
    writeVideo(writer,RGB);
end

Close the Figure window and the AVI file.

close(fig)
close(writer)

Write the animated GIF file.

filename = 'wmsanimated.gif';
delayTime = 2.0;
loopCount = inf;
imwrite(animated,cmap,filename, ...
    'DelayTime',delayTime,'LoopCount',loopCount);

Step 11: View Animated GIF File

An animation can be viewed in the browser when the browser opens an animated GIF file.

 Compositing and Animating Web Map Service (WMS) Meteorological Layers

9-99



Credits

Katrina Layer

The Katrina layer used in the example is from the NASA Goddard Space Flight Center's SVS Image
Server and is maintained by the Scientific Visualization Studio.

For more information about this server, use the command wmsinfo('http://
svs.gsfc.nasa.gov/cgi-bin/wms?').

NEXRAD Layer

The NEXRAD layer used in the example is from the Iowa State University's IEM WMS server and is a
generated CONUS composite of National Weather Service (NWS) WSR-88D level III base reflectivity.

For more information about this server, use the command wmsinfo('http://
mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r-t.cgi?').

See Also
Functions
wmsfind | refine | wmsupdate | wmsread | usamap | geoshow

Objects
WMSMapRequest | WebMapServer
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Troubleshoot Common Problems with Web Maps

Why Does My Web Map Contain Empty Tiles?
If you create a web map and the display contains empty tiles, it can mean that the web map server is
temporarily off line. To display web maps, the Mapping toolbox must create connections to web map
providers over the Internet. Often, simply trying again after a few minutes solves the problem.

Why Does My Web Map Lose Detail When I Zoom In?
If you zoom in on a web map and certain details of the map disappear, it can mean that the map does
not support that particular zoom level.

See Also
webmap

More About
• “Basic Workflow for Displaying Web Maps” on page 9-61
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Mapping Applications

This chapter describes calculating spatial statistics for geospatial data.

• “Geographic Statistics for Point Locations on a Sphere” on page 10-2
• “Equal-Areas in Geographic Statistics” on page 10-6
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Geographic Statistics for Point Locations on a Sphere
Certain Mapping Toolbox functions compute basic geographical measures for spatial analysis and for
filtering and conditioning data. Since MATLAB functions can compute statistics such as means,
medians, and variances, why not use those functions in the toolbox? First of all, classical statistical
formulas typically assume that data is one-dimensional (and, often, normally distributed). Because
this is not true for geospatial data, spatial analysts have developed statistical measures that extend
conventional statistics to higher dimensions.

Second, such formulas generally assume that data occupies a two-dimensional Cartesian coordinate
system. Computing statistics for geospatial data with geographic coordinates as if it were in a
Cartesian framework can give statistically inappropriate results. While this assumption can
sometimes yield reasonable numerical approximations within small geographic regions, for larger
areas it can lead to incorrect conclusions because of distance measures and area assumptions that
are inappropriate for spheres and spheroids. Mapping Toolbox functions appropriately compute
statistics for geospatial data, avoiding these potential pitfalls.

Geographic Means
Consider the problem of calculating the mean position of a collection of geographic points. Taking the
arithmetical mean of the latitudes and longitudes using the standard MATLAB mean function may
seem reasonable, but doing this could yield misleading results.

Take two points at the same latitude, 180° apart in longitude, for example (30°N,90°W) and
(30°N,90°E). The mean latitude is (30+30)/2=30, which seems right. Similarly, the mean longitude
must be (90+(-90))/2=0. However, as one can also express 90°W as 270°E, (90+270)/2=180 is also a
valid mean longitude. Thus there are two correct answers, the prime meridian and the dateline. This
demonstrates how the sphericity of the Earth introduces subtleties into spatial statistics.

This problem is further complicated when some points are at different latitudes. Because a degree of
longitude at the Arctic Circle covers a much smaller distance than a degree at the equator, distance
between points having a given difference in longitude varies by latitude.

Is in fact 30°N the right mean latitude in the first example? The mean position of two points should be
equidistant from those two points, and should also minimize the total distance. Does (30°N,0°) satisfy
these criteria?

dist1 = distance(30,90,30,0)
dist1 =
    75.5225
dist2 = distance(30,-90,30,0)
dist2 =
    75.5225

Consider a third point, (lat,lon), that is also equidistant from the above two points, but at a lesser
distance:

dist1 = distance(30,90,lat,lon)
dist1 =
    60.0000
dist2 = distance(30,-90,lat,lon)
dist2 =
    60.0000
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What is this mystery point? The lat is 90°N, and any lon will do. The North Pole is the true
geographic mean of these two points. Note that the great circle containing both points runs through
the North Pole (a great circle represents the shortest path between two points on a sphere).

The Mapping Toolbox function meanm determines the geographic mean of any number of points. It
does this using three-dimensional vector addition of all the points. For example, try the following:

lats = [30 30];
longs = [-90 90];
[latbar,longbar] = meanm(lats,longs)
latbar =
    90
longbar =
    0

This is the answer you now expect. This geographic mean can result in one oddity; if the vectors all
cancel each other, the mean is the center of the planet. In this case, the returned mean point is
(NaN,NaN) and a warning is displayed. This phenomenon is highly improbable in real data, but can be
easily constructed. For example, it occurs when all the points are equally spaced along a great circle.
Try taking the geographic mean of (0°,0°), (0°,120°), and (0°,240°), which trisect the equator.

elats = [0 0 0];
elons = [0 120 240];
meanm(elats,elons)

MATLAB issues a warning and returns a vector of NaN values.

Geographic Standard Deviation
As you might now expect, the Cartesian definition of standard deviation provided in the standard
MATLAB function std is also inappropriate for geographic data that is unprojected or covers a
significant portion of a planet. Depending upon your purpose, you might want to use the separate
geographic deviations for latitude and longitude provided by the function stdm, or the single
standard distance provided in stdist. Both methods measure the deviation of points from the mean
position calculated by meanm.

The Meaning of stdm

The stdm function handles the latitude and longitude deviations separately.

[latstd,lonstd] = stdm(lat,lon)

The function returns two deviations, one for latitudes and one for longitudes.

Latitude deviation is a straightforward standard deviation calculation from the mean latitude (mean
parallel) returned by meanm. This is a reasonable measure for most cases, since on a sphere at least,
a degree of latitude always has the same arc length.

Longitude deviation is another matter. Simple calculations based on sum-of-squares angular deviation
from the mean longitude (mean meridian) are misleading. The arc length represented by a degree of
longitude at extreme latitudes is significantly smaller than that at low latitudes.

The term departure is used to represent the arc length distance along a parallel of a point from a
given meridian. For example, assuming a spherical planet, the departure of a degree of longitude at
the Equator is a degree of arc length, but the departure of a degree of longitude at a latitude of 60° is
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one-half a degree of arc length. The stdm function calculates a sum-of-squares departure deviation
from the mean meridian.

If you want to plot the one-sigma lines for stdm, the latitude sigma lines are parallels. However, the
longitude sigma lines are not meridians; they are lines of constant departure from the mean parallel.

This handling of deviation has its problems. For example, its dependence upon the logic of the
coordinate system can cause it to break down near the poles. For this reason, the standard distance
provided by stdist is often a better measure of deviation. The stdm handling is useful for many
applications, especially when the data is not global. For instance, these potential difficulties would
not be a danger for data points confined to the country of Mexico.

The Meaning of stdist

The standard distance of geographic data is a measure of the dispersion of the data in terms of its
distance from the geographic mean. Among its advantages are its applicability anywhere on the globe
and its single value:

dist = stdist(lat,lon)

In short, the standard distance is the average, norm, or cubic norm of the distances of the data points
in a great circle sense from the mean position. It is probably a superior measure to the two deviations
returned by stdm except when a particularly latitude- or longitude-dependent feature is under
examination.
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See Also

More About
• “Equal-Areas in Geographic Statistics” on page 10-6
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Equal-Areas in Geographic Statistics
A common error in applying two-dimensional statistics to geographic data lies in ignoring equal-area
treatment. It is often necessary to bin data to statistically analyze it. In a Cartesian plane, this is
easily done by dividing the space into equal x-y squares. The geographic equivalent of this is to bin up
the data in equal latitude-longitude squares. Since such squares at high latitudes cover smaller areas
than their low-latitude counterparts, the observations in these regions are underemphasized. The
result can be conclusions that are biased toward the equator.

Geographic Histograms
The geographic histogram function histr allows you to display binned-up geographic observations.
The histr function results in equirectangular binning. Each bin has the same angular measurement
in both latitude and longitude, with a default measurement of 1 degree. The center latitudes and
longitudes of the bins are returned, as well as the number of observations per bin:

[binlat,binlon,num] = histr(lats,lons)

As previously noted, these equirectangular bins result in counting bias toward the equator. Here is a
display of the one-degree-by-one-degree binning of approximately 5,000 random data points in
Russia. The relative size of the circles indicates the number of observations per bin:

This is a portion of the whole map, displayed in an equal-area Bonne projection. The first step in
creating data displays without area bias is to choose an equal-area projection. The proportionally
sized symbols are a result of the specialized display function scatterm.

You can eliminate the area bias by adding a fourth output argument to histr, that will be used to
weight each bin's observation by that bin's area:

[binlat,binlon,num,wnum] = histr(lats,lons)

The fourth output is the weighted observation count. Each bin's observation count is divided by its
normalized area. Therefore, a high-latitude bin will have a larger weighted number than a low-
latitude bin with the same number of actual observations. The same data and bins look much different
when they are area-weighted:
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Notice that there are larger symbols to the north in this display. The previous display suggested that
the data was relatively uniformly distributed. When equal-area considerations are included, it is clear
that the data is skewed to the north. In fact, the data used is northerly skewed, but a simple
equirectangular handling failed to demonstrate this.

The histr function, therefore, does provide for the display of area-weighted data. However, the
actual bins used are of varying areas. Remember, the one-degree-by-one-degree bin near a pole is
much smaller than its counterpart near the equator.

The hista function provides for actual equal-area bins.

Converting to an Equal-Area Coordinate System
The actual data itself can be converted to an equal-area coordinate system for analysis with other
statistical functions. It is easy to convert a collection of geographic latitude-longitude points to an
equal-area x-y Cartesian coordinate system. The grn2eqa function applies the same transformation
used in calculating the Equal-Area Cylindrical projection:

[x,y] = grn2eqa(lat,lon)

For each geographic lat - lon pair, an equal-area x - y is returned. The variables x and y can then
be operated on under the equal-area assumption, using a variety of two-dimensional statistical
techniques. Tools for such analysis can be found in the Statistics and Machine Learning Toolbox™
software and elsewhere. The results can then be converted back to geographic coordinates using the
eqa2grn function:

[lat,lon] = eqa2grn(x, y)

Remember, when converting back and forth between systems, latitude corresponds to y and longitude
corresponds to x.
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See Also

More About
• “Geographic Statistics for Point Locations on a Sphere” on page 10-2
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aitoff
Aitoff projection

Classification
Modified Azimuthal

Identifier
aitoff

Graticule
Meridians: Central meridian is a straight line half the length of the Equator. Other meridians are
complex curves, equally spaced along the Equator, and concave toward the central meridian.

Parallels: Equator is straight. Other parallels are complex curves, equally spaced along the central
meridian, and concave toward the nearest pole.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features
This projection is neither conformal nor equal area. The only point free of distortion is the center
point. Distortion of shape and area are moderate throughout. This projection has less angular
distortion on the outer meridians near the poles than pseudoazimuthal projections

Parallels
There is no standard parallel for this projection.

Remarks
• This projection was created by David Aitoff in 1889. It is a modification of the Equidistant

Azimuthal projection. The Aitoff projection inspired the similar Hammer projection, which is equal
area.

• This implementation of the Aitoff projection is applicable only for coordinates that are referenced
to a sphere. If you want to project coordinates that are referenced to an ellipsoid, using the
projfwd or projinv functions, then create a projcrs object instead of a map projection
structure. You can create a projcrs object for the Aitoff projection using the ESRI authority code
54043. For example: projcrs(54043,'Authority','ESRI').
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('aitoff', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a
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eqaconic
Albers Equal-Area Conic Projection

Classification
Conic

Identifier
eqaconic

Graticule
Meridians: Equally spaced straight lines converging to a common point, usually beyond the pole. The
angles between the meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the point of convergence. Spacing of
parallels decreases away from the central latitudes.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About any meridian.

Features
This is an equal-area projection. Scale is true along the one or two selected standard parallels. Scale
is constant along any parallel; the scale factor of a meridian at any given point is the reciprocal of
that along the parallel to preserve equal-area. This projection is free of distortion along the standard
parallels. Distortion is constant along any other parallel. This projection is neither conformal nor
equidistant.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane and a Lambert Azimuthal Equal-Area projection results. If two parallels
are chosen, not symmetric about the Equator, then a Lambert Equal-Area Conic projection results. If
a pole is selected as one of the standard parallels, then the projected pole is a point, otherwise the
projected pole is an arc. If the Equator is chosen as a single parallel, the cone becomes a cylinder and
a Lambert Equal-Area Cylindrical projection is the result. Finally, if two parallels equidistant from the
Equator are chosen as the standard parallels, a Behrmann or other equal-area cylindrical projection
is the result. Suggested parallels for maps of the conterminous U.S. are [29.5 45.5]. The default
parallels are [15 75].

Remarks
This projection was presented by Heinrich Christian Albers in 1805.
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Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaconic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
eqaconicstd on page 11-6

Version History
Introduced before R2006a
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eqaconicstd
Albers Equal-Area Conic Projection — Standard

Classification
Conic

Identifier
eqaconicstd

Graticule
Meridians: Equally spaced straight lines converging to a common point, usually beyond the pole. The
angles between the meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the point of convergence. Spacing of
parallels decreases away from the central latitudes.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About any meridian.

Features
This function implements the Albers Equal Area Conic projection directly on a reference ellipsoid,
consistent with the industry-standard definition of this projection. See eqaconic on page 11-4 for an
alternative implementation based on rotating the authalic sphere.

This is an equal area projection. Scale is true along the one or two selected standard parallels. Scale
is constant along any parallel; the scale factor of a meridian at any given point is the reciprocal of
that along the parallel to preserve equal area. The projection is free of distortion along the standard
parallels. Distortion is constant along any other parallel. This projection is neither conformal nor
equidistant.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane and a Lambert Azimuthal Equal-Area projection results. If two parallels
are chosen, not symmetric about the Equator, then a Lambert Equal-Area Conic projection results. If
a pole is selected as one of the standard parallels, then the projected pole is a point, otherwise the
projected pole is an arc. If the Equator is chosen as a single parallel, the cone becomes a cylinder and
a Lambert Equal-Area Cylindrical projection is the result. Finally, if two parallels equidistant from the
Equator are chosen as the standard parallels, a Behrmann or other equal-area cylindrical projection
is the result. Suggested parallels for maps of the conterminous U.S. are [29.5 45.5]. The default
parallels are [15 75].
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Remarks
• This projection was presented by Heinrich Christian Albers in 1805 and it is also known as a

Conical Orthomorphic projection. The cone of projection has interesting limiting forms. If a pole is
selected as a single standard parallel, the cone is a plane, and a Lambert Equal Area Conic
projection is the result. If the Equator is chosen as a single parallel, the cone becomes a cylinder
and a Lambert Cylindrical Equal Area Projection is the result. Finally, if two parallels equidistant
from the Equator are chosen as the standard parallels, a Behrmann or other cylindrical equal area
projection is the result.

• Mapping Toolbox uses a different implementation of the standard Albers equal-area conic
projection for displaying coordinates on axesm-based maps than for projecting coordinates using
the projfwd or projinv function. These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaconicstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See also
eqaconic on page 11-4

Version History
Introduced before R2006a

 eqaconicstd
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apianus
Apianus II Projection

Classification
Pseudocylindrical

Identifier
apianus

Graticule
Meridians: Equally spaced elliptical curves converging at the poles.

Parallels: Equally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features
Scale is constant along any parallel or pair of parallels equidistant from the Equator, as well as along
the central meridian. The Equator is free of angular distortion. This projection is not equal-area,
equidistant, or conformal.

Parallels
There is no standard parallel for this projection.

Remarks
• This projection was first described in 1524 by Peter Apian (or Bienewitz).
• This implementation of the Apianus II projection is applicable only for coordinates that are

referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('apianus', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 apianus
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balthsrt
Balthasart Cylindrical Projection

Classification
Cylindrical

Identifier
balthsrt

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder secant at the 50º parallels. It is equal-area, but
distortion of shape increases with distance from the standard parallels. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. This projection is
not equidistant.

Standard Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
50º.

Remarks
The Balthasart Cylindrical projection was presented in 1935 and is a special form of the Equal-Area
Cylindrical projection secant at 50ºN and S.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('balthsrt', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 balthsrt
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behrmann
Behrmann Cylindrical Projection

Classification
Cylindrical

Identifier
behrmann

Graticule
Meridians: Equally spaced straight parallel lines 0.42 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder secant at the 30º parallels. It is equal-area, but
distortion of shape increases with distance from the standard parallels. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. This projection is
not equidistant.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
30º.

Remarks
This projection is named for Walter Behrmann, who presented it in 1910 and is a special form of the
Equal-Area Cylindrical projection secant at 30ºN and S.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('behrmann', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 behrmann
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bsam
Bolshoi Sovietskii Atlas Mira Projection

Classification
Cylindrical

Identifier
bsam

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a perspective projection from a point on the Equator opposite a given meridian onto a cylinder
secant at the 30º parallels. It is not equal-area, equidistant, or conformal. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. There is no
distortion along the standard parallels, but it increases moderately away from these parallels,
becoming severe at the poles.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
30º.

Remarks
• This projection was first described in 1937, when it was used for maps in the Bolshoi Sovietskii

Atlas Mira (Great Soviet World Atlas). It is commonly abbreviated as the BSAM projection. It is a
special form of the Braun Perspective Cylindrical projection secant at 30ºN and S.

• This implementation of the Bolshoi Sovietskii Atlas Mira projection is applicable only for
coordinates that are referenced to a sphere.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bsam', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 bsam
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bonne
Bonne Projection

Classification
Pseudoconic

Identifier
bonne

Graticule
Central Meridian: A straight line.

Meridians: Complex curves connecting points equally spaced along each parallel and concave toward
the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the central meridian.

Poles: Points.

Symmetry: About the central meridian.

Features
This is an equal-area projection. The curvature of the standard parallel is identical to that on a cone
tangent at that latitude. The central meridian and the central parallel are free of distortion. This
projection is not conformal.

Parallels
This projection has one standard parallel, which is 30ºN by default. It has two interesting limiting
forms. If a pole is employed as the standard parallel, a Werner projection results; if the Equator is
used, a Sinusoidal projection results.

Remarks
This projection dates in a rudimentary form back to Claudius Ptolemy (about A.D. 100). It was further
developed by Bernardus Sylvanus in 1511. It derives its name from its considerable use by Rigobert
Bonne, especially in 1752.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bonne', 'Frame', 'on', 'Grid', 'on');
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geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 bonne
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braun
Braun Perspective Cylindrical Projection

Classification
Cylindrical

Identifier
braun

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an perspective projection from a point on the Equator opposite a given meridian onto a
cylinder secant at standard parallels. It is not equal-area, equidistant, or conformal. Scale is true
along the standard parallels and constant between two parallels equidistant from the Equator. There
is no distortion along the standard parallels, but it increases moderately away from these parallels,
becoming severe at the poles.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, any latitude may be chosen; the default is
arbitrarily set to 0º.

Remarks
• This projection was first described by Braun in 1867. It is less well known than the specific forms

of it called the Gall Stereographic and the Bolshoi Sovietskii Atlas Mira projections.
• This implementation of the Braun perspective cylindrical projection is applicable only for

coordinates that are referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('braun', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-18



geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 braun
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breusing
Breusing Harmonic Mean Projection

Classification
Azimuthal

Identifier
breusing

Graticule
The graticule described is for the polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole.

Parallels: Unequally spaced circles centered on the central pole. The opposite hemisphere cannot be
shown. Spacing increases (slightly) away from the central pole.

Poles: The central pole is a point, while the opposite pole cannot be shown.

Symmetry: About any meridian.

Features
This is a harmonic mean between a Stereographic and Lambert Equal-Area Azimuthal projection. It is
not equal-area, equidistant, or conformal. There is no point at which scale is accurate in all
directions. The primary feature of this projection is that it is minimum error—distortion is moderate
throughout.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• F. A. Arthur Breusing developed a geometric mean version of this projection in 1892. A. E. Young
modified this to the harmonic mean version presented here in 1920. This projection is virtually
indistinguishable from the Airy Minimum Error Azimuthal projection, presented by George Airy in
1861.

• This implementation of the Breusing harmonic mean projection is applicable only for coordinates
that are referenced to a sphere.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('breusing', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 breusing
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bries
Briesemeister Projection

Classification
Modified Azimuthal

Identifier
bries

Graticule
Meridians: Central meridian is straight. Other meridians are complex curves.

Parallels: Complex curves.

Poles: Points.

Symmetry: About the central meridian.

Features
This equal-area projection groups the continents about the center of the projection. The only point
free of distortion is the center point. Distortion of shape and area are moderate throughout.

Parallels
There is no standard parallel for this projection.

Remarks
• This projection was presented by William Briesemeister in 1953. It is an oblique Hammer

projection with an axis ratio of 1.75 to 1, instead of 2 to 1.
• This implementation of the Briesemeister projection is applicable only for coordinates that are

referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bries', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-22



Version History
Introduced before R2006a

 bries
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cassini
Cassini Cylindrical Projection

Classification
Cylindrical

Identifier
cassini

Graticule
Central Meridian: Straight line (includes meridian opposite the central meridian in one continuous
line).

Other Meridians: Straight lines if 90º from central meridian, complex curves concave toward the
central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features
This is a projection onto a cylinder tangent at the central meridian. Distortion of both shape and area
are functions of distance from the central meridian. Scale is true along the central meridian and
along any straight line perpendicular to the central meridian (i.e., it is equidistant).

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel of the base projection
is by definition fixed at 0º.

Remarks
• This projection is the transverse aspect of the Plate Carrée projection, developed by César

François Cassini de Thury (1714–1784). It is still used for the topographic mapping of a few
countries.

• This implementation of the Cassini cylindrical projection is applicable only for coordinates that are
referenced to a sphere.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('cassini', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See also
cassinistd on page 11-26

Version History
Introduced before R2006a

 cassini
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cassinistd
Cassini Cylindrical Projection — Standard

Identifier
cassinistd

Graticule
Central Meridian: Straight line (includes meridian opposite the central meridian in one continuous
line).

Other Meridians: Straight lines if 90º from central meridian, complex curves concave toward the
central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features
This is a projection onto a cylinder tangent at the central meridian. Distortion of both shape and area
are functions of distance from the central meridian. Scale is true along the central meridian and
along any straight line perpendicular to the central meridian (i.e., it is equidistant).

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel of the base projection
is by definition fixed at 0º.

Remarks
• This projection is the transverse aspect of the Plate Carrée projection, developed by César

François Cassini de Thury (1714–1784). It is still used for the topographic mapping of a few
countries.

• cassinistd implements the Cassini projection directly on a sphere or reference ellipsoid, as
opposed to using the equidistant cylindrical projection in transverse mode as in function cassini
on page 11-24. Distinct forms are used for the sphere and ellipsoid, because approximations in the
ellipsoidal formulation cause it to be appropriate only within a zone that extends 3 or 4 degrees in
longitude on either side of the central meridian.

• Mapping Toolbox uses a different implementation of the standard Cassini cylindrical projection for
displaying coordinates on axesm-based maps than for projecting coordinates using the projfwd
or projinv function. These implementations may produce differing results.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('cassinistd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See also
cassini on page 11-24

Version History
Introduced before R2006a

 cassinistd
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ccylin
Central Cylindrical Projection

Classification
Cylindrical

Identifier
ccylin

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles, more rapidly than that of the Mercator projection.

Poles: Cannot be shown.

Symmetry: About any meridian or the Equator.

Features
This is a perspective projection from the center of the Earth onto a cylinder tangent at the Equator. It
is not equal-area, equidistant, or conformal. Scale is true along the Equator and constant between
two parallels equidistant from the Equator. Scale becomes infinite at the poles. There is no distortion
along the Equator, but it increases rapidly away from the Equator.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
0º.

Remarks
• The origin of this projection is unknown; it has little use beyond the educational aspects of its

method of projection and as a comparison to the Mercator projection, which is not perspective.
The transverse aspect of the central cylindrical is called the Wetch projection.

• This implementation of the central cylindrical projection is applicable only for coordinates that are
referenced to a sphere.

Limitations
Data at latitudes greater than 75º is trimmed to prevent large values from dominating the display.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('ccylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 ccylin
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collig
Collignon Projection

Classification
Pseudocylindrical

Identifier
collig

Graticule
Meridians: Equally spaced straight lines converging at the North Pole.

Parallels: Unequally spaced straight parallel lines, farthest apart near the North Pole, closest near the
South Pole

Poles: North Pole is a point, South Pole is a line 1.41 as long as the Equator.

Symmetry: About the central meridian.

Features
This is a novelty projection showing a straight-line, equal-area graticule. Scale is true along the
15º51'N parallel, constant along any parallel, and different for any pair of parallels. Distortion is
severe in many regions, and is only absent at 15º51'N on the central meridian. This projection is not
conformal or equidistant.

Parallels
This projection has one standard parallel, which is by definition fixed at 15º51'.

Remarks
This projection was presented by Édouard Collignon in 1865.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('collig', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 collig
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craster
Craster Parabolic Projection

Classification
Pseudocylindrical

Identifier
craster

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced parabolas intersecting at the poles and concave toward the central
meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing
changes very gradually and is greatest near the Equator.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 36º46' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. Distortion is severe near the
outer meridians at high latitudes, but less so than the Sinusoidal projection. This projection is free of
distortion only at the two points where the central meridian intersects the 36º46' parallels. This
projection is not conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 36º46'.

Remarks
This projection was developed by John Evelyn Edmund Craster in 1929; it was further developed by
Charles H. Deetz and O.S. Adams in 1934. It was presented independently in 1934 by Putnins as his
P4 projection.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('craster', 'Frame', 'on', 'Grid', 'on');
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geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 craster
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eckert1
Eckert I Projection

Classification
Pseudocylindrical

Identifier
eckert1

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced straight converging lines broken at the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
Scale is true along the 47º10' parallels and is constant along any parallel, between any pair of
parallels equidistant from the Equator, and along any given meridian. It is not free of distortion at any
point, and the break at the Equator introduces excessive distortion there; regardless of the
appearance here, the Tissot indicatrices are of indeterminate shape along the Equator. This novelty
projection is not equal-area or conformal.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 47º10'.

Remarks
• This projection was presented by Max Eckert in 1906.
• This implementation of the Eckert I projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Eckert I projection using the ESRI
authority code 54015. For example: projcrs(54015,'Authority','ESRI').
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 eckert1
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eckert2
Eckert ll Projection

Classification
Pseudocylindrical

Identifier
eckert2

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced straight converging lines broken at the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
widest near the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 55º10' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. It is not free of distortion at
any point except at 55º10'N and S along the central meridian; the break at the Equator introduces
excessive distortion there. Regardless of the appearance here, the Tissot indicatrices are of
indeterminate shape along the Equator. This novelty projection is not conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 55º10'.

Remarks
This projection was presented by Max Eckert in 1906.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert2', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 eckert2
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eckert3
Eckert lll Projection

Classification
Pseudocylindrical

Identifier
eckert3

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced semiellipses concave toward the central meridian. The outer
meridians, 180º east and west of the central meridian, are semicircles.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
Scale is true along the 35º58' parallels and is constant along any parallel and between any pair of
parallels equidistant from the Equator. No point is free of all scale distortion, but the Equator is free
of angular distortion. This projection is not equal-area, conformal, or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 35º58'.

Remarks
• This projection was presented by Max Eckert in 1906.
• This implementation of the Eckert III projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Eckert III projection using the ESRI
authority code 54013. For example: projcrs(54013,'Authority','ESRI').
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert3', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 eckert3
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eckert4
Eckert IV Projection

Classification
Pseudocylindrical

Identifier
eckert4

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced semiellipses concave toward the central meridian. The outer
meridians, 180º east and west of the central meridian, are semicircles.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 40º30' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at
the two points where the 40º30' parallels intersect the central meridian. This projection is not
conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 40º30'.

Remarks
This projection was presented by Max Eckert in 1906.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert4', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 eckert4
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eckert5
Eckert V Projection

Classification
Pseudocylindrical

Identifier
eckert5

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This projection is an arithmetic average of the x and y coordinates of the Sinusoidal and Plate Carrée
projections. Scale is true along latitudes 37º55'N and S, and is constant along any parallel and
between any pair of parallels equidistant from the Equator. There is no point free of all distortion, but
the Equator is free of angular distortion. This projection is not equal-area, conformal, or equidistant.

Parallels
This projection has one standard parallel, which is by definition fixed at 0º.

Remarks
• This projection was presented by Max Eckert in 1906.
• This implementation of the Eckert V projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Eckert V projection using the ESRI
authority code 54011. For example: projcrs(54011,'Authority','ESRI').

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert5', 'Frame', 'on', 'Grid', 'on');
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geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 eckert5
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eckert6
Eckert VI Projection

Classification
Pseudocylindrical

Identifier
eckert6

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 49º16' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at
the two points where the 49º16' parallels intersect the central meridian. This projection is not
conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 49º16'.

Remarks
This projection was presented by Max Eckert in 1906.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert6', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 eckert6
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eqacylin
Equal-Area Cylindrical Projection

Classification
Cylindrical

Identifier
eqacylin

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder secant at the standard parallels. It is equal-area,
but distortion of shape increases with distance from the standard parallels. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. This projection is
not equidistant.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, any latitude may be chosen; the default is
arbitrarily set to 0º (the Lambert variation).

Remarks
• This projection was proposed by Johann Heinrich Lambert (1772), a prolific cartographer who

proposed seven different important projections. The form of this projection tangent at the Equator
is often called the Lambert Equal-Area Cylindrical projection. That and other special forms of this
projection are included separately in this guide, including the Gall Orthographic, the Behrmann
Cylindrical, the Balthasart Cylindrical, and the Trystan Edwards Cylindrical projections.

• Mapping Toolbox uses a different implementation of the equal-area cylindrical projection for
displaying coordinates on axesm-based maps than for projecting coordinates using the projfwd
or projinv function. These implementations may produce differing results.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqacylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 eqacylin
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eqdazim
Equidistant Azimuthal Projection

Classification
Azimuthal

Identifier
eqdazim

Graticule
The graticule described is for the polar aspect.

Meridians: Equally spaced straight lines intersecting at a central pole. The angles between them are
the true angles.

Parallels: Equally spaced circles, centered on the central pole. The entire Earth may be shown.

Poles: Central pole is a point. The opposite pole is a bounding circle with a radius twice that of the
Equator.

Symmetry: About any meridian.

Features
This is an equidistant projection. It is neither equal-area nor conformal. In the polar aspect, scale is
true along any meridian. The projection is distortion free only at the center point. Distortion is
moderate for the inner hemisphere, but it becomes extreme in the outer hemisphere.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• This projection may have been first used by the ancient Egyptians for star charts. Several

cartographers used it during the sixteenth century, including Guillaume Postel, who used it in
1581. Other names for this projection include Postel and Zenithal Equidistant.

• Mapping Toolbox uses a different implementation of the equidistant azimuthal projection for
displaying coordinates on axesm-based maps than for projecting coordinates using the projfwd
or projinv function. These implementations may produce differing results.

• The implementation of the equidistant azimuthal projection for displaying coordinates on axesm-
based maps is applicable only for coordinates that are referenced to a sphere. The implementation
of the equidistant azimuthal projection for projecting coordinates using the projfwd or projinv
function is applicable for coordinates referenced to either a sphere or an ellipsoid.
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Limitations
This projection is available only on the sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdazim', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 eqdazim
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eqdconic
Equidistant Conic Projection

Classification
Conic

Identifier
eqdconic

Graticule
Meridians: Equally spaced straight lines converging to a common point, usually beyond the pole. The
angles between the meridians are less than the true angles.

Parallels: Equally spaced concentric circular arcs centered on the point of meridional convergence.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About any meridian.

Features
Scale is true along each meridian and the one or two selected standard parallels. Scale is constant
along any parallel. This projection is free of distortion along the two standard parallels. Distortion is
constant along any other parallel. This projection provides a compromise in distortion between
conformal and equal-area conic projections, of which it is neither.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane, and an Equidistant Azimuthal projection results. If two parallels are
chosen, not symmetric about the Equator, then an Equidistant Conic projection results. If a pole is
selected as one of the standard parallels, then the projected pole is a point, otherwise the projected
pole is an arc. If the Equator is so chosen, the cone becomes a cylinder and a Plate Carrée projection
results. If two parallels equidistant from the Equator are chosen as the standard parallels, an
Equidistant Cylindrical projection results. The default parallels are [15 75].

Remarks
In a rudimentary form, this projection dates back to Claudius Ptolemy, about A.D. 100. Improvements
were developed by Johannes Ruysch in 1508, Gerardus Mercator in the late 16th century, and Nicolas
de l'Isle in 1745. It is also known as the Simple Conic or Conic projection.
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Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdconic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
eqdconicstd on page 11-52

Version History
Introduced before R2006a

 eqdconic
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eqdconicstd
Equidistant Conic Projection — Standard

Identifier
eqdconicstd

Graticule
Meridians: Equally spaced straight lines converging to a common point, usually beyond the pole. The
angles between the meridians are less than the true angles.

Parallels: Equally spaced concentric circular arcs centered on the point of meridional convergence.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About any meridian.

Features
eqdconicstd implements the Equidistant Conic projection directly on a reference ellipsoid,
consistent with the industry-standard definition of this projection. See eqdconic on page 11-50 for
an alternative implementation based on rotating the rectifying sphere.

Scale is true along each meridian and the one or two selected standard parallels. Scale is constant
along any parallel. This projection is free of distortion along the two standard parallels. Distortion is
constant along any other parallel. This projection provides a compromise in distortion between
conformal and equal-area conic projections, of which it is neither.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane, and an Equidistant Azimuthal projection results. If two parallels are
chosen, not symmetric about the Equator, then an Equidistant Conic projection results. If a pole is
selected as one of the standard parallels, then the projected pole is a point, otherwise the projected
pole is an arc. If the Equator is so chosen, the cone becomes a cylinder and a Plate Carrée projection
results. If two parallels equidistant from the Equator are chosen as the standard parallels, an
Equidistant Cylindrical projection results. The default parallels are [15 75].

Remarks
• In a rudimentary form, this projection dates back to Claudius Ptolemy, about A.D. 100.

Improvements were developed by Johannes Ruysch in 1508, Gerardus Mercator in the late 16th
century, and Nicolas de l'Isle in 1745. It is also known as the Simple Conic or Conic projection.

• Mapping Toolbox uses a different implementation of the standard equidistant conic projection for
displaying coordinates on axesm-based maps than for projecting coordinates using the projfwd
or projinv function. These implementations may produce differing results.
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Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdconicstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
eqdconic on page 11-50

Version History
Introduced before R2006a

 eqdconicstd
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eqdcylin
Equidistant Cylindrical Projection

Classification
Cylindrical

Identifier
eqdcylin

Graticule
Meridians: Equally spaced straight parallel lines more than half as long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having wider spacing than the
meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a projection onto a cylinder secant at the standard parallels. Distortion of both shape and area
increase with distance from the standard parallels. Scale is true along all meridians (i.e., it is
equidistant) and the standard parallels and is constant along any parallel and along the parallel of
opposite sign.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, any latitude can be chosen; the default is
arbitrarily set to 30º.

Remarks
• This projection was first used by Marinus of Tyre about A.D. 100. Special forms of this projection

are the Plate Carrée, with a standard parallel at 0º, and the Gall Isographic, with standard
parallels at 45ºN and S. Other names for this projection include Equirectangular, Rectangular,
Projection of Marinus, La Carte Parallélogrammatique, and Die Rechteckige Plattkarte.

• By default, the standard parallels are at +/- 30 degrees in geodetic latitude.
• When projecting a sphere, the origin vector is used to specify a triaxial rigid-body rotation.
• When projecting an ellipsoid:
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• The origin longitude (2nd element of the origin vector) determines which meridian maps to the
line x == false easting

• The origin latitude (1st element of the origin vector) is used to shift the natural origin off the
equator via a constant y-offset, in addition to any false northing that may be specified.

• The grid convergence is fixed at 0, even if the 3rd element of the origin vector is nonzero.
• Mapping Toolbox uses a different implementation of the equidistant cylindrical projection for

displaying coordinates on axesm-based maps than for projecting coordinates using the projfwd
or projinv function. These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdcylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 eqdcylin
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fournier
Fournier Projection

Classification
Pseudocylindrical

Identifier
fournier

Graticule
Meridians: Equally spaced elliptical curves converging at the poles.

Parallels: Straight lines.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features
This projection is equal-area. Scale is constant along any parallel or pair of parallels equidistant from
the Equator. This projection is neither equidistant nor conformal.

Parallels
There is no standard parallel for this projection.

Remarks
This projection was first described in 1643 by Georges Fournier. This is actually his second
projection, the Fournier II.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('fournier', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 fournier
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giso
Gall Isographic Projection

Classification
Cylindrical

Identifier
giso

Graticule
Meridians: Equally spaced straight parallel lines more than half as long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having wider spacing than the
meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a projection onto a cylinder secant at the 45º parallels. Distortion of both shape and area
increase with distance from the standard parallels. Scale is true along all meridians (i.e., it is
equidistant) and the two standard parallels, and is constant along any parallel and along the parallel
of opposite sign.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
45º.

Remarks
• This projection is a specific case of the Equidistant Cylindrical projection, with standard parallels

at 45ºN and S.
• On the sphere, this projection can have an arbitrary, oblique aspect, as controlled by the Origin

property of the axesm-based map. On the ellipsoid, only the equatorial aspect is supported.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('giso', 'Frame', 'on', 'Grid', 'on');
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geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 giso
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gortho
Gall Orthographic Projection

Classification
Cylindrical

Identifier
gortho

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder secant at the 45º parallels. It is equal-area, but
distortion of shape increases with distance from the standard parallels. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. This projection is
not equidistant.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
45º.

Remarks
This projection is named for James Gall, who originated it in 1855 and is a special form of the Equal-
Area Cylindrical projection secant at 45ºN and S. This projection is also known as the Peters
projection.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gortho', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 gortho
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gstereo
Gall Stereographic Projection

Classification
Cylindrical

Identifier
gstereo

Graticule
Meridians: Equally spaced straight parallel lines 0.77 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a perspective projection from a point on the Equator opposite a given meridian onto a cylinder
secant at the 45º parallels. It is not equal-area, equidistant, or conformal. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. There is no
distortion along the standard parallels, but it increases moderately away from these parallels,
becoming severe at the poles.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
45º.

Remarks
• This projection was presented by James Gall in 1855. It is also known simply as the Gall

projection. It is a special form of the Braun Perspective Cylindrical projection secant at 45ºN and
S.

• This implementation of the Gall stereographic projection is applicable only for coordinates that
are referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Gall stereographic projection using
the ESRI authority code 54016. For example: projcrs(54016,'Authority','ESRI').
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• Mapping Toolbox uses a different implementation of the Gall stereographic projection for
displaying coordinates on axesm-based maps than for projecting coordinates using the projfwd
or projinv function. These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gstereo', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 gstereo
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globe
Frame for 3-D map display on axesm-based map

Classification
Spherical

Identifier
globe

Graticule
This map display is based on a coordinate transformation and is not a true map projection. Meridians,
parallels, and displayed map data appear in a 3-D view that depends on the view and camera settings
of the axesm-based map. Change the view interactively or by using the view function. Change the
camera settings using the camposm, camtargm, and camupm functions.

Features
In the 3-D sense, globe is true in scale, equal-area, conformal, minimum error, and equidistant
everywhere.

While globe has none of the distortions inherent in planar projections, it cannot be displayed without
distortion or in its entirety. In order to render the globe in a figure window, either a perspective or
orthographic transformation must be applied, both of which necessarily involve setting a viewpoint,
hiding the back side and distortions of shape, scale, and angles.

Parallels
The globe requires no standard parallels.

Remarks
The globe display allows you to visualize terrain relief or other data for an entire planet viewed from
space. Its underlying transformation maps latitude, longitude, and elevation to a 3-D Cartesian frame.
The globe display is different from other transformations because it can render relative relief of
elevations above, below, or on a sphere.

When displayed, the globe looks like an orthographic azimuthal projection, provided that the
Projection property of the axesm-based map is set to 'orthographic'.

Examples

11 Map Projections — Alphabetical List

11-64



Display Geoid Heights on Globe

Display geoid heights from the EGM96 geoid model over a 3-D globe. First, get geoid heights and a
geographic postings reference object. Load coastline latitude and longitude data.

[N,R] = egm96geoid;
load coastlines

Create a frame for the 3-D globe display using axesm. Set the line of sight for the globe using view.
Turn off the axes background using axis off. Then, display the geoid heights and coastline data.

axesm('globe','Grid','on')
view(60,60)
axis off
meshm(N,R)
plotm(coastlat,coastlon)

Display Polygon on Globe

Display a polygon on a globe by converting the polygon to a data grid.

Create a sample polygon that contains a hole and rests on the surface of the globe. To do this,
generate the vertices of its external and internal boundaries using the outlinegeoquad function.
Specify the geographic limits as the first two arguments, and the vertex spacing in degrees as the

 globe
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next two arguments. Reverse the order of the internal boundary vertices using the flip function, so
they are in a counterclockwise order.

[latE,lonE] = outlinegeoquad([-35 35],[-30 30],0.25,0.25);
[latI,lonI] = outlinegeoquad([-15 15],[-15 15],0.25,0.25);
latI = flip(latI);
lonI = flip(lonI);

Combine the vertices into a single list by separating the boundaries with NaN values.

lat = [latE NaN latI];
lon = [lonE NaN lonI];

The vectors lat and lon represent the boundaries of a polygon that contain a hole. Display the
boundaries on the globe as a filled polygon by converting the polygon to a data grid.

To do this, create a geographic cells reference object for the globe and a grid of ones. Replace
elements of the grid with the polygon data using the vec2mtx function. The new grid contains 0s to
indicate the inside region of the polygon, 1s to indicate the boundaries, and 2s to indicate the outside
region of the polygon.

R = georefcells([-90 90],[-180 180],0.25,0.25);
V = ones(R.RasterSize);
[V,R] = vec2mtx(lat,lon,V,R,'filled');

Create a globe using the axesm function. Display the data grid as an image using the geoshow
function. Adjust the colormap so the inside region of the polygon is purple and the outside region is
white. Change the camera line of sight using the view function, so the polygon is displayed on the
near side of the globe.

axesm('globe','Grid','on')
geoshow(V,R,'DisplayType','texturemap')
colormap([0.5 0.5 0.8; 0 0 0; 1 1 1])
axis off
view(100,20)
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The appearance of polygons on the globe is dependent on the camera line of sight and the globe
transparency. For example, make the globe slightly transparent using the alpha function.

alpha(0.6)

 globe
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When you view the polygon from the near side of the globe, the external boundary vertices appear in
a clockwise order. When you view the polygon from the far side of the globe, the external boundary
vertices appear in a counterclockwise order. When you rotate the globe so the polygon appears on
both the near side and far side, then the polygon appears to intersect itself.
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Version History
Introduced before R2006a

See Also
geoshow | outlinegeoquad | axesm | vec2mtx

Topics
“Create and Display Polygons” on page 2-8

 globe
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gnomonic
Gnomonic Projection

Classification
Azimuthal

Identifier
gnomonic

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are the
true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing increases rapidly away from
this pole. The Equator and the opposite hemisphere cannot be shown

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features
This is a perspective projection from the center of the globe on a plane tangent at the center point,
which is a pole in the common polar aspect, but can be any point. Less than one hemisphere can be
shown with this projection, regardless of its center point. The significant property of this projection is
that all great circles are straight lines. This is useful in navigation, as a great circle is the shortest
path between two points on the globe. Only the center point enjoys true scale and zero distortion.
This projection is neither conformal nor equal-area.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• This projection may have been first developed by Thales around 580 B.C. Its name is derived from

the gnomon, the face of a sundial, since the meridians radiate like hour markings. This projection
is also known as a gnomic or central projection.

• This implementation of the gnomonic projection is applicable only for coordinates that are
referenced to a sphere.
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• Mapping Toolbox uses a different implementation of the gnomonic projection for displaying
coordinates on axesm-based maps than for projecting coordinates using the projfwd or projinv
function. These implementations may produce differing results.

Limitations
Data greater than 65º distant from the center point is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gnomonic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a
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11-71



goode
Goode Homolosine Projection

Classification
Pseudocylindrical

Identifier
goode

Graticule
Central Meridian: Straight line 0.44 as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves between the 40º44'11.8'' parallels and elliptical
arcs elsewhere, all concave toward the central meridian. The result is a slight, visible bend in the
meridians at 40º44'11.8'' N and S.

Parallels: Straight parallel lines, perpendicular to the central meridian. Equally spaced between the
40º44'11.8'' parallels, with gradually decreasing spacing outside these parallels.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along all parallels and the central meridian between
40º44'11.8'' N and S, and is constant along any parallel and between any pair of parallels equidistant
from the Equator for all latitudes. Its distortion is identical to that of the Sinusoidal projection
between 40º44'11.8'' N and S, and to that of the Mollweide projection elsewhere. This projection is
not conformal or equidistant.

Parallels
This projection has one standard parallel, which is by definition fixed at 0º.

Remarks
This projection was developed by J. Paul Goode in 1916. It is sometimes called simply the Homolosine
projection, and it is usually used in an interrupted form. It is a merging of the Sinusoidal and
Mollweide projections.

Limitations
This projection is available in an uninterrupted form only.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('goode', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 goode
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hammer
Hammer Projection

Classification
Modified Azimuthal

Identifier
hammer

Graticule
Meridians: Central meridian is a straight line half the length of the Equator. Other meridians are
complex curves, equally spaced along the Equator, and concave toward the central meridian.

Parallels: Equator is straight. Other parallels are complex curves, equally spaced along the central
meridian, and concave toward the nearest pole.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features
This projection is equal-area. The only point free of distortion is the center point. Distortion of shape
is moderate throughout. This projection has less angular distortion on the outer meridians near the
poles than pseudoazimuthal projections

Parallels
There is no standard parallel for this projection.

Remarks
• This projection was presented by H. H. Ernst von Hammer in 1892. It is a modification of the

Lambert Azimuthal Equal Area projection. Inspired by Aitoff projection, it is also known as the
Hammer-Aitoff. It in turn inspired the Briesemeister, a modified oblique Hammer projection. John
Bartholomew's Nordic projection is an oblique Hammer centered on 45 degrees north and the
Greenwich meridian. The Hammer projection is used in whole-world maps and astronomical maps
in galactic coordinates.

• This implementation of the Hammer projection is applicable only for coordinates that are
referenced to a sphere.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('hammer', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 hammer
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hatano
Hatano Asymmetrical Equal-Area Projection

Classification
Pseudocylindrical

Identifier
hatano

Graticule
Central Meridian: Straight line 0.48 as long as the Equator.

Other Meridians: Equally spaced elliptical arcs concave toward the central meridian. The eccentricity
of each ellipse changes at the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
not symmetrical about the Equator.

Poles: The North Pole is a line two-thirds the length of the Equator; the South Pole is a line three-
fourths the length of the Equator.

Symmetry: About the central meridian but not the Equator.

Features
This is an equal-area projection. Scale is true along 40º42'N and 38º27'S, and is constant along any
parallel but generally not between pairs of parallels equidistant from the Equator. It is free of
distortion only along the central meridian at 40º42'N and 38º27'S. This projection is not conformal or
equidistant.

Parallels
Because of the asymmetrical nature of this projection, two standard parallels must be specified. The
standard parallels are by definition fixed at 40º42'N and 38º27'S.

Remarks
This projection was presented by Masataka Hatano in 1972.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('hatano', 'Frame', 'on', 'Grid', 'on');
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geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 hatano
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kavrsky5
Kavraisky V Projection

Classification
Pseudocylindrical

Identifier
kavrsky5

Graticule
Meridians: Complex curves converging at the poles. A sine function is used for y, but the meridians
are not sine curves.

Parallels: Unequally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and the central meridian.

Features
This is an equal-area projection. Scale is true along the fixed standard parallels at 35º, and 0.9 true
along the Equator. This projection is neither conformal nor equidistant.

Parallels
The fixed standard parallels are at 35º.

Remarks
This projection was described by V. V. Kavraisky in 1933.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('kavrsky5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 kavrsky5
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kavrsky6
Kavraisky VI Projection

Classification
Pseudocylindrical

Identifier
kavrsky6

Graticule
Central Meridian: Straight line half the length of the Equator.

Meridians: Sine curves (60º segments).

Parallels: Unequally spaced straight lines.

Poles: Straight lines half the length of the Equator.

Symmetry: About the Equator and the central meridian.

Features
This is an equal-area projection. Scale is constant along any parallel or pair of equidistant parallels.
This projection is neither conformal nor equidistant.

Parallels
There are no standard parallels for this projection.

Remarks
This projection was described by V. V. Kavraisky in 1936. It is also called the Wagner I, for Karlheinz
Wagner, who described it in 1932.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('kavrsky6', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 kavrsky6
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eqaazim
Lambert Azimuthal Equal-Area Projection

Classification
Azimuthal

Identifier
eqaazim

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are the
true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. The entire Earth can be shown.
Spacing decreases away from the central pole.

Pole: The central pole is a point; the other pole is a bounding circle with 1.41 the radius of the
Equator.

Symmetry: About any meridian.

Features
This nonperspective projection is equal-area. Only the center point is free of distortion, but distortion
is moderate within 90º of this point. Scale is true only at the center point, increasing tangentially and
decreasing radially with distance from the center point. This projection is neither conformal nor
equidistant.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• This projection was presented by Johann Heinrich Lambert in 1772. It is also known as the

Zenithal Equal-Area and the Zenithal Equivalent projection, and the Lorgna projection in its polar
aspect.

• Mapping Toolbox uses a different implementation of the Lambert azimuthal equal-area projection
for displaying coordinates on axesm-based maps than for projecting coordinates using the
projfwd or projinv function. These implementations may produce differing results.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaazim', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

 eqaazim
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lambert
Lambert Conformal Conic Projection

Classification
Conic

Identifier
lambert

Graticule
Meridians: Equally spaced straight lines converging at one of the poles. The angles between the
meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the pole of convergence. Spacing of
parallels increases away from the central latitudes.

Poles: The pole nearest a standard parallel is a point, the other cannot be shown.

Symmetry: About any meridian.

Features
Scale is true along the one or two selected standard parallels. Scale is constant along any parallel and
is the same in every direction at any point. This projection is free of distortion along the standard
parallels. Distortion is constant along any other parallel. This projection is conformal everywhere but
the poles; it is neither equal-area nor equidistant.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane, and a Stereographic Azimuthal projection results. If two parallels are
chosen, not symmetric about the Equator, then a Lambert Conformal Conic projection results. If a
pole is selected as one of the standard parallels, then the projected pole is a point, otherwise the
projected pole is an arc. If the Equator or two parallels equidistant from the Equator are chosen as
the standard parallels, the cone becomes a cylinder, and a Mercator projection results. The default
parallels are [15 75].

Remarks
This projection was presented by Johann Heinrich Lambert in 1772 and is also known as a Conical
Orthomorphic projection.
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Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed. The default map
limits are [0 90] to avoid extreme area distortion.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambert', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
lambertstd on page 11-86

 lambert
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lambertstd
Lambert Conformal Conic Projection — Standard

Classification
Conic

Identifier
lambertstd

Graticule
Meridians: Equally spaced straight lines converging at one of the poles. The angles between the
meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the pole of convergence. Spacing of
parallels increases away from the central latitudes.

Poles: The pole nearest a standard parallel is a point, the other cannot be shown.

Symmetry: About any meridian.

Features
lambertstd implements the Lambert Conformal Conic projection directly on a reference ellipsoid,
consistent with the industry-standard definition of this projection. See lambert on page 11-84 for an
alternative implementation based on rotating the authalic sphere.

Scale is true along the one or two selected standard parallels. Scale is constant along any parallel and
is the same in every direction at any point. This projection is free of distortion along the standard
parallels. Distortion is constant along any other parallel. This projection is conformal everywhere but
the poles; it is neither equal-area nor equidistant.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane, and a Stereographic Azimuthal projection results. If two parallels are
chosen, not symmetric about the Equator, then a Lambert Conformal Conic projection results. If a
pole is selected as one of the standard parallels, then the projected pole is a point, otherwise the
projected pole is an arc. If the Equator or two parallels equidistant from the Equator are chosen as
the standard parallels, the cone becomes a cylinder, and a Mercator projection results. The default
parallels are [15 75].
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Remarks
• This projection was presented by Johann Heinrich Lambert in 1772 and is also known as a Conical

Orthomorphic projection.
• Mapping Toolbox uses a different implementation of the standard Lambert conformal conic

projection for displaying coordinates on axesm-based maps than for projecting coordinates using
the projfwd or projinv function. These implementations may produce differing results.

Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed. The default map
limits are [0 90] to avoid extreme area distortion.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambertstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
lambert on page 11-84

Version History
Introduced before R2006a

 lambertstd
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lambcyln
Lambert Equal-Area Cylindrical Projection

Classification
Cylindrical

Identifier
lambcyln

Graticule
Meridians: Equally spaced straight parallel lines 0.32 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder tangent at the Equator. It is equal-area, but
distortion of shape increases with distance from the Equator. Scale is true along the Equator and
constant between two parallels equidistant from the Equator. This projection is not equidistant.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
0º.

Remarks
This projection is named for Johann Heinrich Lambert and is a special form of the Equal-Area
Cylindrical projection tangent at the Equator.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambcyln', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 lambcyln
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loximuth
Loximuthal Projection

Classification
Pseudocylindrical

Identifier
loximuth

Graticule
Central Meridian: Straight line at least half as long as the Equator. Actual length depends on the
choice of central latitude. Length is 0.5 when the central latitude is the Equator, for example, and
0.65 for central latitudes of 40º.

Other Meridians: Complex curves intersecting at the poles and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Points.

Symmetry: About the central meridian. Symmetry about the Equator only when it is the central
latitude.

Features
This projection has the special property that from the central point (the intersection of the central
latitude with the central meridian), rhumb lines (loxodromes) are shown as straight, true to scale, and
correct in azimuth from the center. This differs from the Mercator projection, in that rhumb lines are
here shown in true scale and that unlike the Mercator, this projection does not maintain true azimuth
for all points along the rhumb lines. Scale is true along the central meridian and is constant along any
parallel, but not, generally, between parallels. It is free of distortion only at the central point and can
be severely distorted in places. However, this projection is designed for its specific special property,
in which distortion is not a concern.

Parallels
For this projection, only one standard parallel is specified: the central latitude described above.
Specification of this central latitude defines the center of the loximuthal projection. The default value
is 0º.

Remarks
• This projection was presented by Karl Siemon in 1935 and independently by Waldo R. Tobler in

1966. The Bordone Oval projection of 1520 was very similar to the Equator-centered loximuthal.
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• This implementation of the loximuthal projection is applicable only for coordinates that are
referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the loximuthal projection using the
ESRI authority code 54023. For example: projcrs(54023,'Authority','ESRI').

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('loximuth', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 loximuth
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flatplrp
McBryde-Thomas Flat-Polar Parabolic Projection

Classification
Pseudocylindrical

Identifier
flatplrp

Graticule
Central Meridian: Straight line 0.48 as long as the Equator.

Other Meridians: Equally spaced parabolic curves concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 45º30' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. Distortion is severe near the
outer meridians at high latitudes, but less so than on the pointed-polar projections. It is free of
distortion only at the two points where the central meridian intersects the 45º30' parallels. This
projection is not conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 45º30'.

Remarks
This projection was presented by F. Webster McBryde and Paul D. Thomas in 1949.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrp', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-92



Version History
Introduced before R2006a

 flatplrp
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flatplrq
McBryde-Thomas Flat-Polar Quartic Projection

Classification
Pseudocylindrical

Identifier
flatplrq

Graticule
Central Meridian: Straight line 0.45 as long as the Equator.

Other Meridians: Equally spaced quartic (fourth-order equation) curves concave toward the central
meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 33º45' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. Distortion is severe near the
outer meridians at high latitudes, but less so than on the pointed-polar projections. It is free of
distortion only at the two points where the central meridian intersects the 33º45' parallels. This
projection is not conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 33º45'.

Remarks
This projection was presented by F. Webster McBryde and Paul D. Thomas in 1949, and is also known
simply as the Flat-Polar Quartic projection.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrq', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-94



geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 flatplrq
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flatplrs
McBryde-Thomas Flat-Polar Sinusoidal Projection

Classification
Pseudocylindrical

Identifier
flatplrs

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves intersecting at the poles and concave toward the
central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
widest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This projection is equal-area. Scale is true along the 55º51' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at
the two points where the central meridian intersects the 55º51' parallels. This projection is not
conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 55º51'.

Remarks
This projection was presented by F. Webster McBryde and Paul D. Thomas in 1949.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrs', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 flatplrs
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mercator
Mercator Projection

Classification
Cylindrical

Identifier
mercator

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles.

Poles: Cannot be shown.

Symmetry: About any meridian or the Equator.

Features
This is a projection with parallel spacing calculated to maintain conformality. It is not equal-area,
equidistant, or perspective. Scale is true along the standard parallels and constant between two
parallels equidistant from the Equator. It is also constant in all directions near any given point. Scale
becomes infinite at the poles. The appearance of the Mercator projection is unaffected by the
selection of standard parallels; they serve only to define the latitude of true scale.

The Mercator, which may be the most famous of all projections, has the special feature that all rhumb
lines, or loxodromes (lines that make equal angles with all meridians, i.e., lines of constant heading),
are straight lines. This makes it an excellent projection for navigational purposes. However, the
extreme area distortion makes it unsuitable for general maps of large areas.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, any latitude less than 86º may be chosen;
the default is arbitrarily set to 0º.

Remarks
• The Mercator projection is named for Gerardus Mercator, who presented it for navigation in 1569.

It is now known to have been used for the Tunhuang star chart as early as 940 by Ch'ien Lo-Chih.
It was first used in Europe by Erhard Etzlaub in 1511. It is also, but rarely, called the Wright
projection, after Edward Wright, who developed the mathematics behind the projection in 1599.
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• Mapping Toolbox uses a different implementation of the Mercator projection for displaying
coordinates on axesm-based maps than for projecting coordinates using the projfwd or projinv
function. These implementations may produce differing results.

Limitations
Data at latitudes greater than 86º is trimmed to prevent large y-values from dominating the display.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('mercator', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 mercator
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miller
Miller Cylindrical Projection

Classification
Cylindrical

Identifier
miller

Graticule
Meridians: Equally spaced straight parallel lines 0.73 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles, less rapidly than that of the Mercator projection.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a projection with parallel spacing calculated to maintain a look similar to the Mercator
projection while reducing the distortion near the poles and allowing the poles to be displayed. It is
not equal-area, equidistant, conformal, or perspective. Scale is true along the Equator and constant
between two parallels equidistant from the Equator. There is no distortion near the Equator, and it
increases moderately away from the Equator, but it becomes severe at the poles.

The Miller Cylindrical projection is derived from the Mercator projection; parallels are spaced from
the Equator by calculating the distance on the Mercator for a parallel at 80% of the true latitude and
dividing the result by 0.8. The result is that the two projections are almost identical near the Equator.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
0º.

Remarks
• This projection was presented by Osborn Maitland Miller of the American Geographical Society in

1942. It is often used in place of the Mercator projection for atlas maps of the world, for which it
is somewhat more appropriate.
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• Mapping Toolbox uses a different implementation of the Miller projection for displaying
coordinates on axesm-based maps than for projecting coordinates using the projfwd or projinv
function. These implementations may produce differing results.

• The implementation of the Miller projection for displaying coordinates on axesm-based maps is
applicable only for coordinates that are referenced to a sphere. The implementation of the Miller
projection for projecting coordinates using the projfwd or projinv function is applicable for
coordinates referenced to either a sphere or an ellipsoid.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('miller', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 miller
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mollweid
Mollweide Projection

Classification
Pseudocylindrical

Identifier
mollweid

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Meridians 90º east and west of the central meridian form a circle. The others are
equally spaced semiellipses intersecting at the poles and concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest toward the Equator, but the spacing changes gradually.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 40º44' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at
the two points where the 40º44' parallels intersect the central meridian. This projection is not
conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 40º44'.

Remarks
This projection was presented by Carl B. Mollweide in 1805. Its other names include the
Homolographic, the Homalographic, the Babinet, and the Elliptical projections. It is occasionally used
for thematic world maps, and it is combined with the Sinusoidal to produce the Goode Homolosine
projection.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('mollweid', 'Frame', 'on', 'Grid', 'on');
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geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 mollweid
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murdoch1
Murdoch I Conic Projection

Classification
Conic

Identifier
murdoch1

Graticule
Meridians: Equally spaced straight lines converging at one of the poles.

Parallels: Equally spaced concentric circular arcs.

Poles: Arcs, one of which might become a point in the limit.

Symmetry: About any meridian.

Features
This is an equidistant projection that is nearly minimum-error. Scale is true along any meridian and is
constant along any parallel. Scale is also true along two standard parallels. These must be calculated,
however (see remark on parallels below). The total area of the mapped area is correct, but it is not
equal-area everywhere.

Parallels
The parallels for this projection are not standard parallels, but rather limiting parallels. The special
feature of this map, correct total area, holds between these parallels. The default parallels are [15
75].

Remarks
• Described by Patrick Murdoch in 1758.
• This implementation of the Murdoch I conic projection is applicable only for coordinates that are

referenced to a sphere.

Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('murdoch1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 murdoch1
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murdoch3
Murdoch III Minimum Error Conic Projection

Classification
Conic

Identifier
murdoch3

Graticule
Meridians: Equally spaced straight lines converging at one of the poles.

Parallels: Equally spaced concentric circular arcs.

Poles: Arcs, one of which might become a point in the limit.

Symmetry: About any meridian.

Features
This is an equidistant projection that is minimum-error. Scale is true along any meridian and is
constant along any parallel. Scale is also true along two standard parallels. These must be calculated,
however (see remark on parallels below). The total area of the mapped area is correct, but it is not
equal-area everywhere.

Parallels
The parallels for this projection are not standard parallels, but rather limiting parallels. The special
feature of this map, correct total area, holds between these parallels. The default parallels are [15
75].

Remarks
• Described by Patrick Murdoch in 1758, with errors corrected by Everett in 1904.
• This implementation of the Murdoch III minimum error conic projection is applicable only for

coordinates that are referenced to a sphere.

Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('murdoch3', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 murdoch3
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ortho
Orthographic Projection

Classification
Azimuthal

Identifier
ortho

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are the
true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing decreases away from this
pole. The opposite hemisphere cannot be shown.

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features
This is a perspective projection on a plane tangent at the center point from an infinite distance (that
is, orthogonally). The center point is a pole in the common polar aspect, but can be any point. This
projection has two significant properties. It looks like a globe, providing views of the Earth
resembling those seen from outer space. Additionally, all great and small circles are either straight
lines or elliptical arcs on this projection. Scale is true only at the center point and is constant in the
circumferential direction along any circle having the center point as its center. Distortion increases
rapidly away from the center point, the only place that is distortion-free. This projection is neither
conformal nor equal-area.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• This projection appears to have been developed by the Egyptians and Greeks by the second

century B.C.
• This implementation of the orthographic projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,

11 Map Projections — Alphabetical List

11-108



using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the orthographic projection using the
ESRI authority code 102037. For example: projcrs(102037,'Authority','ESRI').

• Mapping Toolbox uses a different implementation of the orthographic projection for displaying
coordinates on axesm-based maps than for projecting coordinates using the projfwd or projinv
function. These implementations may produce differing results.

Limitations
Data greater than 89º distant from the center point is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('ortho', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 ortho
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pcarree
Plate Carree Projection

Classification
Cylindrical

Identifier
pcarree

Graticule
Meridians: Equally spaced straight parallel lines half as long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having the same spacing as the
meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a projection onto a cylinder tangent at the Equator. Distortion of both shape and area
increases with distance from the Equator. Scale is true along all meridians (i.e., it is equidistant) and
the Equator and is constant along any parallel and along the parallel of opposite sign.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
0º.

Remarks
• This projection, like the more general Equidistant Cylindrical, is credited to Marinus of Tyre,

thought to have invented it about A.D. 100. It may, in fact, have been originated by Erastosthenes,
who lived approximately 275–195 B.C. The Plate Carrée has the most simply constructed graticule
of any projection. It was used frequently in the 15th and 16th centuries and is quite common today
in very simple computer mapping programs. It is the simplest and limiting form of the Equidistant
Cylindrical projection. Another name for the Plate Carrée projection is the Simple Cylindrical. Its
transverse aspect is the Cassini projection.

• On the sphere, this projection can have an arbitrary, oblique aspect, as controlled by the Origin
property of the axesm-based map. On the ellipsoid, only the equatorial aspect is supported.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('pcarree', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 pcarree
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polycon
Polyconic Projection

Classification
Polyconic

Identifier
polycon

Graticule
Central Meridian: A straight line.

Meridians: Complex curves spaced equally along the Equator and each parallel, and concave toward
the central meridian.

Parallels: The Equator is a straight line. All other parallels are nonconcentric circular arcs spaced at
true distances along the central meridian.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About the Equator or the central meridian.

Features
For this projection, each parallel has a curvature identical to its curvature on a cone tangent at that
latitude. Since each parallel has its own cone, this is a “polyconic” projection. Scale is true along the
central meridian and along each parallel. This projection is free of distortion only along the central
meridian; distortion can be severe at extreme longitudes. This projection is neither conformal nor
equal-area.

Parallels
By definition, this projection has no standard parallels, since every parallel is a standard parallel.

Remarks
This projection was apparently originated about 1820 by Ferdinand Rudolph Hassler. It is also known
as the American Polyconic and the Ordinary Polyconic projection.

Limitations
Longitude data greater than 75º east or west of the central meridian is trimmed.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('polycon', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
polyconstd on page 11-114

Version History
Introduced before R2006a

 polycon
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polyconstd
Polyconic Projection — Standard

Classification
Polyconic

Identifier
polyconstd

Graticule
Central Meridian: A straight line.

Meridians: Complex curves spaced equally along the Equator and each parallel, and concave toward
the central meridian.

Parallels: The Equator is a straight line. All other parallels are nonconcentric circular arcs spaced at
true distances along the central meridian.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About the Equator or the central meridian.

Features
polyconstd implements the Polyconic projection directly on a reference ellipsoid, consistent with
the industry-standard definition of this projection. See polycon on page 11-112 for an alternative
implementation based on rotating the rectifying sphere.

For this projection, each parallel has a curvature identical to its curvature on a cone tangent at that
latitude. Since each parallel has its own cone, this is a “polyconic” projection. Scale is true along the
central meridian and along each parallel. This projection is free of distortion only along the central
meridian; distortion can be severe at extreme longitudes. This projection is neither conformal nor
equal-area.

Parallels
By definition, this projection has no standard parallels, since every parallel is a standard parallel.

Remarks
• This projection was apparently originated about 1820 by Ferdinand Rudolph Hassler. It is also

known as the American Polyconic and the Ordinary Polyconic projection.
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• Mapping Toolbox uses a different implementation of the standard polyconic projection for
displaying coordinates on axesm-based maps than for projecting coordinates using the projfwd
or projinv function. These implementations may produce differing results.

Limitations
Longitude data greater than 75º east or west of the central meridian is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('polyconstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
polycon on page 11-112

Version History
Introduced before R2006a

 polyconstd
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putnins5
Putnins P5 Projection

Classification
Pseudocylindrical

Identifier
putnins5

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of hyperbolas intersecting at the poles and concave toward
the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
Scale is true along the 21º14' parallels and is constant along any parallel, between any pair of
parallels equidistant from the Equator, and along the central meridian. It is not free of distortion at
any point. This projection is not equal-area, conformal, or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 21º14'.

Remarks
• This projection was presented by Reinholds V. Putnins in 1934.
• This implementation of the Putnins P5 projection is applicable only for coordinates that are

referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('putnins5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 putnins5

11-117



quartic
Quartic Authalic Projection

Classification
Pseudocylindrical

Identifier
quartic

Graticule
Central Meridian: Straight line 0.45 as long as the Equator.

Other Meridians: Equally spaced quartic (fourth-order equation) curves concave toward the central
meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing
changes gradually and is greatest near the Equator.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the Equator and is constant along any parallel
and between any pair of parallels equidistant from the Equator. Distortion is severe near the outer
meridians at high latitudes, but less so than on the Sinusoidal projection. It is free of distortion along
the Equator. This projection is not conformal or equidistant.

Parallels
This projection has one standard parallel, which is by definition fixed at 0º.

Remarks
This projection was presented by Karl Siemon in 1937 and independently by Oscar Sherman Adams in
1945.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('quartic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 quartic
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robinson
Robinson Projection

Classification
Pseudocylindrical

Identifier
robinson

Graticule
Central Meridian: Straight line 0.51 as long as the Equator.

Other Meridians: Equally spaced, resemble elliptical arcs and are concave toward the central
meridian.

Parallels: Straight parallel lines, perpendicular to the central meridian. Spacing is equal between the
38º parallels, decreasing outside these limits.

Poles: Lines 0.53 as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
Scale is true along the 38º parallels and is constant along any parallel or between any pair of
parallels equidistant from the Equator. It is not free of distortion at any point, but distortion is very
low within about 45º of the center and along the Equator. This projection is not equal-area,
conformal, or equidistant; however, it is considered to look right for world maps, and hence is widely
used by Rand McNally, the National Geographic Society, and others. This feature is achieved through
the use of tabular coordinates rather than mathematical formulae for the graticules.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 38º.

Remarks
• This projection was presented by Arthur H. Robinson in 1963, and is also called the Orthophanic

projection, which means right appearing.
• This implementation of the Robinson projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
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projection structure. You can create a projcrs object for the Robinson projection using the ESRI
authority code 54030. For example: projcrs(54030,'Authority','ESRI').

• Mapping Toolbox uses a different implementation of the Robinson projection for displaying
coordinates on axesm-based maps than for projecting coordinates using the projfwd or projinv
function. These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('robinson', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 robinson
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sinusoid
Sinusoidal projection

Classification
Pseudocylindrical

Identifier
sinusoid

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves intersecting at the poles and concave toward the
central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
This projection is equal-area. Scale is true along every parallel and along the central meridian. There
is no distortion along the Equator or along the central meridian, but it becomes severe near the outer
meridians at high latitudes.

Parallels
This projection has one standard parallel, which is by definition fixed at 0º.

Remarks
• This projection was developed in the 16th century. It was used by Jean Cossin in 1570 and by

Jodocus Hondius in Mercator atlases of the early 17th century. It is the oldest pseudocylindrical
projection currently in use, and is sometimes called the Sanson-Flamsteed or the Mercator Equal-
Area projection.

• Mapping Toolbox uses a different implementation of the sinusoidal projection for displaying
coordinates on axesm-based maps than for projecting coordinates using the projfwd or projinv
function. These implementations may produce differing results.
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('sinusoid', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 sinusoid
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stereo
Stereographic Projection

Classification
Azimuthal

Identifier
stereo

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are the
true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing increases gradually away
from this pole.

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features
This is a perspective projection on a plane tangent at the center point from the point antipodal to the
center point. The center point is a pole in the common polar aspect, but can be any point. This
projection has two significant properties. It is conformal, being free from angular distortion.
Additionally, all great and small circles are either straight lines or circular arcs on this projection.
Scale is true only at the center point and is constant along any circle having the center point as its
center. This projection is not equal-area.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• The polar aspect of this projection appears to have been developed by the Egyptians and Greeks

by the second century B.C.
• Mapping Toolbox uses a different implementation of the stereographic projection for displaying

coordinates on axesm-based maps than for projecting coordinates using the projfwd or projinv
function. These implementations may produce differing results.
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Limitations
Data greater than 90º distant from the center point is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('stereo', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 stereo
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modsine
Tissot Modified Sinusoidal Projection

Classification
Pseudocylindrical

Identifier
modsine

Graticule
Meridians: Sine curves converging at the Poles.

Parallels: Equally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and the central meridian

Features
This is an equal-area projection. Scale is constant along any parallel or any pair of equidistant
parallels, and along the central meridian. It is not equidistant or conformal.

Parallels
There are no standard parallels for this projection.

Remarks
This projection was first described by N. A. Tissot in 1881

Limitations
This projection is available only for the sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('modsine', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 modsine
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tranmerc
Transverse Mercator Projection

Classification
Cylindrical

Identifier
tranmerc

Features
This conformal projection is the transverse form of the Mercator projection and is also known as the
Gauss-Krueger projection. It is not equal area, equidistant, or perspective.

The scale is constant along the central meridian, and increases to the east and west. The scale at the
central meridian can be set true to scale, or reduced slightly to render the mean scale of the overall
map more correctly.

Remarks
• The uniformity of scale along its central meridian makes transverse Mercator an excellent choice

for mapping areas that are elongated north-to-south. Its best known application is the definition of
Universal Transverse Mercator (UTM) coordinates. Each UTM zone spans only 6 degrees of
longitude, but the northern half extends from the equator all the way to 84 degrees north and the
southern half extends from 80 degrees south to the equator. Other map grids based on transverse
Mercator include many of the state plane zones in the U.S. and the U.K. National Grid.

• Mapping Toolbox uses a different implementation of the transverse Mercator projection for
displaying coordinates on axesm-based maps than for projecting coordinates using the projfwd
or projinv function. These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('tranmerc', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 tranmerc
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trystan
Trystan Edwards Cylindrical Projection

Classification
Cylindrical

Identifier
trystan

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder secant at the 37º24' parallels. It is equal-area, but
distortion of shape increases with distance from the standard parallels. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. This projection is
not equidistant.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
37º24'.

Remarks
This projection is named for Trystan Edwards, who presented it in 1953. It is a special form of the
Equal-Area Cylindrical projection secant at 37º24'N and S.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('trystan', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 trystan
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ups
Universal Polar Stereographic System

Classification
Azimuthal

Identifier
ups

Graticule
The graticule described is for the southern zone.

Meridians: Equally spaced straight lines centered on the South Pole. The angles displayed are the
true angles between meridians.

Parallels: Unequally spaced circles centered on the South Pole. Spacing increases gradually away
from the circle of true scale along latitude 87 degrees, 7 minutes N. The opposite pole cannot be
shown.

Poles: The South Pole is a point. The North Pole is not shown.

Symmetry: About any meridian.

Features
This is a perspective projection on a plane tangent to either the North or South Pole. It is conformal,
being free from angular distortion. Additionally, all great and small circles are either straight lines or
circular arcs on this projection. Scale is true along latitudes 87 degrees, 7 minutes N or S, and is
constant along any other parallel. This projection is not equal area.

Parallels
The parallels 87 degrees, 7 minutes N and S are lines of true scale by virtue of the scale factor. There
are no standard parallels for azimuthal projections.

Remarks
• This projection is a special case of the stereographic projection in the polar aspect. It is used as

part of the Universal Transverse Mercator (UTM) system to extend coverage to the poles. This
projection has two zones: “North” for latitudes 84º N to 90º N, and “South” for latitudes 80º S to
90º S. The defaults for this projection are: scale factor is 0.994, false easting and northing are
2,000,000 meters. The international ellipsoid in units of meters is used as the geoid model.
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• Mapping Toolbox uses a different implementation of the UPS projection for displaying coordinates
on axesm-based maps than for projecting coordinates using the projfwd or projinv function.
These implementations may produce differing results.

Version History
Introduced in R2006a

 ups
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utm
Universal Transverse Mercator System

Classification
Cylindrical

Identifier
utm

Graticule
Meridians: Complex curves concave toward the central meridian.

Parallels: Complex curves concave toward the nearest pole.

Poles: Not shown.

Symmetry: About the central meridian or the Equator.

Features
This is a conformal projection with parameters chosen to minimize distortion over a defined set of
small areas. It is not equal area, equidistant, or perspective. Scale is true along two straight lines on
the map approximately 180 kilometers east and west of the central meridian, and is constant along
other straight lines equidistant from the central meridian. Scale is less than true between, and
greater than true outside the lines of true scale.

Parallels
There are no standard parallels for this projection. There are two lines of zero distortion by virtue of
the scale factor.

Remarks
The UTM system divides the world between 80º S and 84º degrees N into a set of quadrangles called
zones. Zones generally cover 6 degrees of longitude and 8 degrees of latitude. Each zone has a set of
defined projection parameters, including central meridian, false eastings and northings and the
reference ellipsoid. The projection equations are the Gauss-Krüger versions of the Transverse
Mercator. The projected coordinates form a grid system, in which a location is specified by the zone,
easting and northing.

The UTM system was introduced in the 1940s by the U.S. Army. It is widely used in topographic and
military mapping.

11 Map Projections — Alphabetical List

11-134



Version History
Introduced in R2006a

 utm
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vgrint1
Van der Grinten I Projection

Classification
Polyconic

Identifier
vgrint1

Graticule
Central Meridian: A straight line.

Meridians: Circular curves spaced equally along the equator and concave toward the central
meridian.

Parallels: The Equator is a straight line. All other parallels are circular arcs concave toward the
nearest pole.

Poles: Points.

Symmetry: About the Equator or the central meridian.

Features
In this projection, the world is enclosed in a circle. Scale is true along the Equator and increases
rapidly away from the Equator. Area distortion is extreme near the poles. This projection is neither
conformal nor equal-area.

Parallels
There are no standard parallels for this projection.

Remarks
• This projection was presented by Alphons J. Van der Grinten in 1898. He obtained a U.S. patent for

it in 1904. It is also known simply as the Van der Grinten projection (without the “I”).
• Mapping Toolbox uses a different implementation of the Van der Grinten I projection for displaying

coordinates on axesm-based maps than for projecting coordinates using the projfwd or projinv
function. These implementations may produce differing results.

• The implementation of the Van der Grinten I projection for displaying coordinates on axesm-based
maps is applicable only for coordinates that are referenced to a sphere. The implementation of the
Van der Grinten I projection for projecting coordinates using the projfwd or projinv function is
applicable for coordinates referenced to either a sphere or an ellipsoid.
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Limitations
This projection is available only for the sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('vgrint1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 vgrint1
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vperspec
Vertical Perspective Azimuthal Projection

Classification
Azimuthal

Identifier
vperspec

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are
true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing decreases away from this
pole. The opposite hemisphere cannot be shown, nor can distant parts of the closer hemisphere. The
limit of visibility depends on the observation altitude.

Poles: The central pole is a point. The other pole is not shown.

Symmetry: About any meridian.

Features
This is a perspective projection on a plane tangent at the center point from a finite distance. Scale is
true only at the center point, and is constant in the circumferential direction along any circle having
the center point as its center. Distortion increases rapidly away from the center point, the only point
which is distortion free. This projection is neither conformal nor equal area.

Remarks
• This projection provides views of the globe resembling those seen from a spacecraft in orbit. The

Orthographic projection is a limiting form with the observer at an infinite distance.
• This projection requires a view altitude parameter, which specifies the observer's altitude above

the origin point. Because this parameter is unique to this projection and because the projection
does not need any standard parallels, a special workaround is used. Rather than add an extra
axesm-based map property just for vperspec, the MapParallels property is repurposed
instead. You should assign the desired view altitude value to the MapParallels property. Provide
a scalar value for length in the same units as the earth radius or semi-major axis length used in
the axesm-based map reference ellipsoid ('Geoid') property.

• This implementation of the vertical perspective azimuthal projection is applicable only for
coordinates that are referenced to a sphere.
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Limitations
Data more distant than the limit of visibility is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('vperspec', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 vperspec
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wagner4
Wagner IV Projection

Classification
Pseudocylindrical

Identifier
wagner4

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of ellipses concave toward the central meridian. The
meridians 103º55' east and west of the central meridian are circular arcs.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 42º59' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. Distortion is not as extreme
near the outer meridians at high latitudes as for pointed-polar pseudocylindrical projections, but
there is considerable distortion throughout the polar regions. It is free of distortion only at the two
points where the 42º59' parallels intersect the central meridian. This projection is not conformal or
equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 42º59'.

Remarks
This projection was presented by Karlheinz Wagner in 1932.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wagner4', 'Frame', 'on', 'Grid', 'on');
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geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 wagner4
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werner
Werner Projection

Classification
Pseudoconic

Identifier
werner

Graticule
Central Meridian: A straight line.

Meridians: Complex curves connecting points equally spaced along each parallel and concave toward
the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the central meridian, centered on
one of the poles.

Poles: Points.

Symmetry: About the central meridian.

Features
This is an equal-area projection. It is a Bonne projection with one of the poles as its standard parallel.
The central meridian is free of distortion. This projection is not conformal. Its heart shape gives it the
additional descriptor cordiform.

Parallels
The standard parallel for this projection is set to 90º N.

Remarks
This projection was developed by Johannes Stabius (Stab) about 1500 and was promoted by Johannes
Werner in 1514. It is also called the Stab-Werner projection.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('werner', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;
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Version History
Introduced before R2006a

 werner
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wetch
Wetch Cylindrical Projection

Classification
Cylindrical

Identifier
wetch

Graticule
Central Meridian: Straight line (includes meridian opposite the central meridian in one continuous
line).

Other Meridians: Straight lines if 90º from central meridian, complex curves concave toward the
central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features
This is a perspective projection from the center of the Earth onto a cylinder tangent to the central
meridian. It is not equal-area, equidistant, or conformal. Scale is true along the central meridian and
constant between two points equidistant in x and y from the central meridian. There is no distortion
along the central meridian, but it increases rapidly away from the central meridian in the y-direction.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, which is the transverse aspect of the Central
Cylindrical, the standard parallel of the base projection is by definition fixed at 0º.

Remarks
• This is the transverse aspect of the Central Cylindrical projection discussed by J. Wetch in the

early 19th century.
• This implementation of the Wetch cylindrical projection is applicable only for coordinates that are

referenced to a sphere.
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Limitations
To prevent large y-values from dominating the display, data at y-values that would correspond to
latitudes of greater than 75º in the normal aspect of the Central Cylindrical projection is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wetch', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 wetch
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wiechel
Wiechel Projection

Classification
Pseudoazimuthal

Identifier
wiechel

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced semicircles from pole to pole, concave toward the west.

Parallels: Concentric circles.

Pole: The central pole is a point; the other pole is a bounding circle.

Symmetry: Radially about the center point.

Features
This equal-area projection is a novelty map, usually centered at a pole, showing semicircular
meridians in a pinwheel arrangement. Scale is correct along the meridians. This projection is not
conformal.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• This projection was presented by H. Wiechel in 1879.
• This implementation of the Wiechel projection is applicable only for coordinates that are

referenced to a sphere.

Limitations
Data greater than 65º distant from the center point is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wiechel', 'Frame', 'on', 'Grid', 'on');
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geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 wiechel
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winkel
Winkel I Projection

Classification
Pseudocylindrical

Identifier
winkel

Graticule
Central Meridian: Straight line at least half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines at least half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This projection is an arithmetical average of the x and y coordinates of the Sinusoidal and Equidistant
Cylindrical projections. Scale is true along the standard parallels and is constant along any parallel
and between any pair of parallels equidistant from the Equator. There is no point free of distortion.
This projection is not equal-area, conformal, or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. Any latitude may be chosen; the default is set to 50º28'.

Remarks
• This projection was developed by Oswald Winkel in 1914. Its limiting form is the Eckert V when a

standard parallel of 0º is chosen.
• This implementation of the Winkel I projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Winkel I projection using the ESRI
authority code 54018. For example: projcrs(54018,'Authority','ESRI').
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Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('winkel', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Version History
Introduced before R2006a

 winkel
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